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1
PROGRAMMABLE LOGIC DEVICE AND
METHODS FOR PROVIDING MULTI-BOOT
CONFIGURATION DATA SUPPORT

RELATED APPLICATION DATA

This application is a continuation of U.S. application Ser.
No. 11/447,591, filed Jun. 6, 2006, which is incorporated
herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to the configuration of programmable
logic devices.

BACKGROUND

Programmable logic devices (PLDs), such as field pro-
grammable gate arrays (FPGAs) or complex programmable
logic devices (CPLDs), may be programmed with configura-
tion data to provide various user-defined features. In certain
applications, configuration data may be programmed into an
external non-volatile memory such as a flash memory. The
configuration data may be loaded from the external non-
volatile memory into the PL.D and programmed into volatile
configuration memory of the PLD upon power-up, in
response to an appropriate instruction, or in response to the
toggling of an appropriate pin of the PLD. When a user
desires to change the behavior of the PLD, the external non-
volatile memory may be erased and reprogrammed with new
configuration data that is subsequently loaded into the PLD.

Unfortunately, the above approach presents several poten-
tial problems for reliable PLD operation. Specifically, if the
configuration data stored in the external non-volatile memory
becomes corrupted or an erroneous configuration data pattern
is loaded into the external non-volatile memory, then the
operation of the PLD may become inoperable or exhibit
unpredictable behavior after the PLD is programmed with the
configuration data pattern. Similarly, if an otherwise valid
configuration data pattern is improperly programmed or
reprogrammed into the PLD or the external non-volatile
memory as a result of, for example, a power failure, then the
operation of the PLD may be likewise affected. Accordingly,
there is a need for an improved approach to the loading of
PLD configuration data that, for example, reduces the likeli-
hood of erroneous configuration data being loaded into con-
figuration memory of the PLD.

SUMMARY

In one embodiment of the invention, a method of config-
uring a programmable logic device includes reading a first
bitstream from a first memory block of non-volatile memory
and detecting whether the first bitstream contains a valid
preamble as the first bitstream is read from the non-volatile
memory and before configuration data in the first bitstream is
programmed into the volatile configuration memory. If a valid
preamble is detected in the first bitstream, the configuration
memory is programmed with configuration data in the first
bitstream. If a valid preamble is not detected in the first
bitstream, a second bitstream is read from a second memory
block of the non-volatile memory.

In another embodiment of the invention, a programmable
logic device includes configuration memory and a controller.
The controller can read a first bitstream from a first memory
block of non-volatile memory and detect whether the first
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bitstream contains a valid preamble as the first bitstream is
read from the non-volatile memory and before configuration
data in the first bitstream is programmed into the volatile
configuration memory. If a valid preamble is detected in the
first bitstream, the controller programs the configuration
memory with configuration data in the first bitstream. If a
valid preamble is not detected in the first bitstream, the con-
troller reads a second bitstream from a second memory block
of the non-volatile memory.

The scope of the invention is defined by the claims, which
are incorporated into this section by reference. A more com-
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real-
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi-
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an exemplary pro-
grammable logic device (PLD) and a plurality of external
non-volatile memory devices in accordance with an embodi-
ment of the present invention.

FIGS. 2A-D illustrate block diagrams of alternative
embodiments of the external non-volatile memory devices of
FIG. 1.

FIG. 3 illustrates a process of loading configuration data
into the PLD of FIG. 1 in response to a power on reset
operation in accordance with an embodiment of the present
invention.

FIG. 4 illustrates a process of loading configuration data
into the PLD of FIG. 1 in response to the toggling of a pin or
the receipt of an appropriate instruction in accordance with an
embodiment of the present invention.

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

The various techniques disclosed herein are applicable to a
wide variety of integrated circuits and applications. As an
exemplary implementation, a programmable logic device
(PLD) will be utilized to illustrate the techniques in accor-
dance with one or more embodiments of the present inven-
tion. However, it should be understood that this is not limiting
and that the techniques disclosed herein may be implemented
as desired, in accordance with one or more embodiments of
the present invention, within various types of circuits.

FIG. 1 illustrates a programmable logic device (PL.D) 100
which may be implemented as a field programmable gate
array (FPGA) as shown in FIG. 1, a complex programmable
logic device (CPLD), or other appropriate PLLD as may be
desired in particular applications.

PLD 100 may be provided in this embodiment of the inven-
tion with a Serial Peripheral Interface (SPI) port 124 that is
supported by a SPI controller 102 and a plurality of SPI pins
118 and 120 (labeled SISPI, CCLK, CSSPION, SPIDO,
CSSPIIN/DOUT, SPID1, and SPIFASTN) to facilitate inter-
facing PLD 100 with external SPI-compatible devices. As
understood by those skilled in the art, SPI is a serial bus
standard established by Motorola Corporation and supported
in silicon products from various manufacturers. In other
embodiments of the invention, other serial or parallel bus
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interfaces may be used. SPI pin 120 may configure SPI con-
troller 102 to operate SPI pins 118 at various alternate speeds.
For example, in one embodiment, SPI pins 118 may operate at
speeds up to approximately 20 MHz if SPI pin 120 exhibits a
first logic state, and may operate at speeds in the range of
approximately 50-85 MHz if SPI pin 120 exhibits a second
logic state. A PROGRAMN pin 122 may be used to trigger a
loading of configuration data from an external non-volatile
memory as further described herein. SPI controller 102 also
supports an INITN pin 126 and a DONE pin 128 which may
be used to indicate the configuration status of PLD 100 as
further described herein.

PLD 100 also includes a control register 104, a plurality of
user logic 106, a common interface block (CIB) 108, a
counter 114, and a JTAG block 116, all of which may be used
by SPI controller 102 in the loading of configuration data
from external SPI-compatible devices. In this regard, control
register 104 stores a control bit value set by a user as part of
configuration data loaded into PLD 100 and may be used by
SPI controller 102 to determine the boot sequence of PLD 100
as further described herein. In one embodiment, control reg-
ister 104 may be implemented as a 32 bit register with bit 26
providing the control bit value as illustrated in FIG. 1. How-
ever, it will be appreciated that other implementations of the
control bit are also contemplated using, for example, other
bits of control register 104, other registers, and/or other bit
storage techniques.

User logic 106 is user-defined logic that is determined by
the particular configuration data previously loaded and pro-
grammed into PL.D 100. CIB 108 facilitates the interfacing of
user logic 106 with SPI controller 102 through a SPI_SEL
signal 110 and a SPI_ADDR bus 112 which may be deter-
mined by user logic 106. Counter 114 is used by PLD 100
during its boot sequence to aid PLD 100 in determining
whether configuration data has been properly loaded into
PLD 100. JTAG block 116 provides a refresh instruction to
SPI controller 102 which may be received through a JTAG
port of PLD 100.

As illustrated, SPI pins 118 may interface with devices
external to PLD 100, such as for example SPI memories 130
and 140 (i.e., through standard SPI pins labeled D, C, S, and
Q as shown in FIG. 1). Each of SPI memories 130 and 140
may be implemented as non-volatile memories (for example,
flash memories, EEPROMs, EPROMs, PROMs, or ROMs)
and may include a plurality of memory blocks 132 (labeled
Block 0,1, X,Y, and Z) and 142 (labeled Block 0, A, B, C, and
D), respectively. Each of memory blocks 132 and 142 may
store a configuration data pattern which may be loaded into
PLD 100 through the use of SPI pins 118 and programmed
into configuration memory 150 (for example, volatile SRAM
memory) of PLD 100. In one embodiment, individual
memory blocks 132 and 142 of SPI memories 130 and 140
may comprise approximately 512 Kbytes.

It will be appreciated that other embodiments of the inven-
tion may include other serial or parallel bus interfaces and
their compatible serial and parallel non-volatile memories.

For example, Block 0 of SPI memory 130 holds configu-
ration data referred to as golden boot data 134 (also referred
to as default boot data) that, when programmed into configu-
ration memory 150 of PLD 100, will cause PLD 100 to
operate in a known stable state. Block 1 of SPI memory 130
holds configuration data referred to as primary boot data 136
that may be loaded upon power up of PLD 100. This block
may also be selectively erased and reprogrammed by a user,
thereby allowing PL.D 100 to be reconfigured with an updated
version of primary boot data 136 when powered up. The
remaining blocks of SPI memories 130 and 140 may option-
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4

ally hold various alternate sets of configuration data which
may also be erased, reprogrammed, and/or selected for load-
ing into PLD 100.

PLD 100 may be implemented to load primary boot data
136 of Block 1 when PLD 100 is powered on. If primary boot
data 136 of Block 1 fails to properly load (for example, as a
result of a power failure during loading or corruption of
primary boot data 136 occurring during erasure or reprogram-
ming of SPI memory 130), SPI controller 102 may automati-
cally load a default set of golden boot data 134 from Block 0
of SPI memory 130. Advantageously, such an implementa-
tion can provide PLD 100 with the opportunity to return to a
known operable state in the event of such failures.

Various other configurations of SPI memories 130 and 140
are also contemplated as illustrated in the block diagrams of
FIGS. 2A-D. It will be appreciated that the various SPI
memories illustrated in FIGS. 2A-D may be implemented as
various alternate embodiments of SPI memory 130 and 140
previously described with regard to FI1G. 1. For example, F1G.
2A illustrates a SPI memory 200 implemented with a mini-
mum of approximately 1 Megabyte of flash memory. Golden
boot data 202, having a maximum of approximately 512
Kbytes, is stored in Block 0 and primary boot data 204 is
stored in Block 1. The remaining memory space 206 of SPI
memory 200 may be unused.

FIG. 2B illustrates a SPI memory 210 implemented with a
minimum of approximately 2 Megabytes of flash memory.
Block 0 of SPI memory 210 is configured to store a JUMP
command 212 which references golden boot data 216 stored
in Block X of SPI memory 210. Block 1 of SPI memory 210
stores primary boot data 214 which may span Block 1 through
additional blocks (not shown) up to Block X. In this regard, it
will be appreciated that in embodiments where each of pri-
mary boot data 214 and golden boot data 216 exceed the size
of a single memory block (for example, larger than 512
Kbytes), then golden boot data 216 may be stored at Block X
to allow primary boot data 214 to be stored in Block 1. As
illustrated, any remaining memory space 218 of SPI memory
210 may be unused.

FIG. 2C illustrates SPI memories 220 and 230 each imple-
mented with a minimum of approximately 2 Megabytes of
flash memory. Similar to SPI memory 130 of FIG. 1 and SPI
memory 200 of FIG. 2A, Block 0 of SPI memory 220 is
configured to store golden boot data 222 having a maximum
ofapproximately 512 Kbytes. Primary boot data 224 is stored
in Block 1. Various alternate configuration data patterns are
stored in the remaining Blocks X and Y of SPI memory 220
and optionally in Blocks 0, A, B, and C of SPI memory 230.
Similar to SPI memories 200 and 210 described above, one or
both of SPI memories 220 and 230 may also include unused
memory space in any of the various memory blocks illus-
trated in FIG. 2C.

FIG. 2D illustrates SPI memories 240 and 250 each imple-
mented with a minimum of approximately 2 Megabytes of
flash memory. Similar to SPI memory 210 of FIG. 2B, Block
0 of SPI memory 240 is configured to store a JUMP command
242 which references golden boot data 246 stored in Block X
of SPI memory 240. Block 1 of SPI memory 240 stores
primary boot data 244 which may span Block 1 through
additional blocks (not shown) up to Block X. Alternate con-
figuration data patterns are stored in the remaining Blocks Y
and Z of SPI memory 240 and optionally in Blocks 0, A, B, C,
and D of SPI memory 250. Similar to SPI memories 200, 210,
220, and 230 described above, one or both of SPI memories
240 and 250 may also include unused memory space in any of
the various memory blocks illustrated in FIG. 2D.
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FIG. 3 illustrates a process of loading configuration data
into PLD 100 in response to a power on reset operation in
accordance with an embodiment of the present invention. As
further described herein, FIG. 3 sets forth an iterative process
that may be implemented by PLD 100 to attempt the loading
of appropriate configuration data from different blocks of SPI
memory 210. Specifically, PLD 100 first attempts to load a set
of'primary boot data from a particular memory block. If errors
are encountered during loading, then PLD 100 attempts to
load a set of golden boot data from a default memory block.
PLD 100 may also load the set of golden boot data from
another memory block if instructed by an appropriate com-
mand detected in the default memory block. Although the
process of FIG. 3 will be described with reference to SPI
memory 210, it will be appreciated that SPI memory 200 of
FIG. 2A may be used in an alternate embodiment.

Turning now to the particulars of FIG. 3, a power on reset
(FOR) operation is performed on PLD 100 at initial operation
302. In this regard, PLD 100 may initially be in an unpowered
state prior to the process of FIG. 3, and then be powered up in
response to operation 302.

In operation 304, counter 114 is set to zero, and SPI con-
troller 102 sends a plurality of signals to SPI memory 210
over SPI pins 118. Specifically, SPI controller 102 may pro-
vide a chip select signal from one of SPI pins 118 labeled
CSSPION in order to select SPI memory 210. SPI controller
102 may also provide a read opcode and a memory address
corresponding to the beginning of Block 1 in a serial fashion
from one of SPI pins 118 labeled SISPI. In this regard, SPI
controller 102 may be implemented to permanently store the
address of Block 1. As previously described, Block 1 of SPI
memory 210 may hold primary boot data 214 which may be
loaded into PLD 100 in order to configure PLD 100 upon
power up. Accordingly, following operation 304, PLD 100
may attempt to read in primary boot data 214 (also labeled
Current or New Config Data) from SPI memory 210 (opera-
tion 306). It will be appreciated that primary boot data 214
may be loaded as a serial bitstream provided to SPI controller
102 over one of SPI pins 118 labeled SPIDO. It will be further
appreciated that where PLD 100 is implemented with a par-
allel bus interface, data may be loaded as a parallel bitstream
(for example, with simultaneous loading of 8 data bits at a
time through the parallel bus interface).

In operation 308, SPI controller 102 detects whether a
configuration data preamble has been received from SPI
memory 210. In this regard, SPI controller 102 may be con-
figured to recognize a particular sequence of bit values (for
example, a 16 bit opcode) that is included at the beginning of
a valid configuration data bitstream. If no preamble is
detected, then SPI controller 102 continues to wait for up to
16K clock cycles (operation 310) until a valid preamble is
received. If no preamble is received, then SPI controller 102
may assume that SPI memory 210 is erased or non-respon-
sive. As a result, the process of FIG. 3 will continue on to
operation 326 further described herein.

However, if a valid preamble is detected in operation 308,
then SPI controller 102 will next determine whether the con-
figuration data read in previous operation 306 corresponds to
a JUMP command (operation 316). As previously described,
JUMP command 212 may be provided in Block 0 of SPI
memory 210 which references Block X where golden boot
data 216 is stored.

If, as illustrated in FIG. 3, Block 1 of SPI memory 210
includes primary boot data 214 which was read in operation
306, then no JUMP command will be found and the process of
FIG. 3 will continue on to operation 318. If a JUMP command
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is detected in operation 316, then the process will proceed to
operation 334 as further described herein.

In operation 318, PL.D 100 continues reading primary boot
data 214 and begins configuring PL.D 100 by programming
configuration memory 150 of PLD 100 with primary boot
data 214. In operation 320, PL.D 100 checks incoming pri-
mary boot data 214 for errors. For example, in one embodi-
ment, operation 320 may include comparing 8 bit frames of
the configuration data against cyclic redundancy codes
(CRCs) embedded in the configuration data bitstream. If no
errors are detected, then DONE pin 322 is released (operation
322) which allows PLD 100 to wake up and the process of
FIG. 3 will end with PLD 100 operating in accordance with
the newly loaded configuration data (operation 324). How-
ever, if an error is detected during operation 320, then the
process proceeds to operation 326 where counter 114 is incre-
mented.

Thereafter, in operation 328, PLD 100 will determine
whether the value of counter 114 is greater than one. As
previously discussed, the value of counter 114 is set to zero in
operation 304. Accordingly, if operation 326 has been per-
formed only once, then the value of counter 114 will be equal
to one and the process will continue on to operation 330.
However, if operation 326 has been performed more than
once, then the value of counter 114 will be greater than one. In
such case, the process will proceed to operation 338 where
SPI controller 102 drives INITN pin 126 low, and the process
of FIG. 3 will end (operation 340).

Inoperation 330, SPI controller 102 sends another plurality
of signals to SPI memory 210 which include a chip select
signal, a read opcode, and a memory address corresponding
to the beginning of Block 0. As previously described, Block 0
of SPI memory 210 may hold JUMP command 212 which
references Block X where golden boot data 216 is stored.
Alternatively, in an embodiment where SPI memory 200 of
FIG. 2A is used in place of SPI memory 210, Block 0 may
hold golden boot data 202, and no JUMP command is used.

Following operation 330, SPI controller 102 attempts to
read in the contents of Block 0 from SPI memory 210 (opera-
tion 332) and the process then returns to operation 308. In this
second iteration of operation 308, SPI controller 102 attempts
to detect whether a configuration data preamble has been
received from SPI memory 210 in response to previous read
operation 332. If no preamble is detected, then SPI controller
102 may proceed to operation 310 as previously described
herein. If a valid preamble is detected (operation 308), then
SPI controller 102 will determine whether the data received in
response to previous read operation 332 corresponds to a
JUMP command. It will be appreciated that because Block 0
contains JUMP command 212, the process will proceed to
operation 334.

In operation 334, SPI controller 102 sends a further plural-
ity of signals to SPI memory 210 which include a chip select
signal, a read opcode, and a memory address corresponding
to the beginning of Block X (which may be included in the
JUMP command read in previous operation 332). Accord-
ingly, following operation 334, PL.D 100 may attempt to read
in golden boot data 216 (also labeled Root Data) from SPI
memory 210 (operation 336) and then return to operation 308.

In this third iteration of operation 308, SPI controller 102
detects whether a configuration data preamble has been
received from SPI memory 210 in response to previous read
operation 336. Again, if no preamble is detected, then SPI
controller 102 may proceed to operation 310 as previously
described herein. If a valid preamble is detected (operation
308), then SPI controller 102 will determine whether the data
read in previous operation 336 corresponds to a JUMP com-
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mand. As indicated in FIG. 3, Block X contains valid golden
boot data 216. As a result, PLD 100 will attempt to configure
itself using the newly loaded golden boot data 216 (operation
318). If the configuration is successful (operation 320), then
the process of FIG. 3 continues on to operations 322 and 324
as previously described herein.

If an error is detected in golden boot data 216 (operation
320), then counter 114 will be incremented to now exhibit a
value of two. Thereafter, when counter 114 is evaluated in
operation 328, the process will proceed to operations 338 and
340 as previously described herein.

In view of the foregoing, it will be appreciated that PLD
100 may be configured with primary boot data 214 or, in the
case of a detected error, with golden boot data 216 referenced
by JUMP command 212. It will further be appreciated that
where SPI memory 200 is used in place of SPI memory 210,
golden boot data 202 may be loaded directly from Block 0 of
SPI memory 200.

FIG. 4 illustrates a process of loading configuration data
into PLD 100 in response to the toggling of PROGRAMN pin
122 or the receipt of an appropriate JTAG instruction in
accordance with an embodiment of the present invention.
Similar to FIG. 3, FIG. 4 sets forth an iterative process that
may be implemented by PL.D 100 to attempt the loading of
appropriate configuration data from particular memory
blocks of SPI memory 240 or 250. Advantageously, the par-
ticular memory blocks read by PLD 100 in FIG. 4 may also be
specified by user logic 106. Although the process of FIG. 4
will be described with reference to SPI memories 240 and
250, it will be appreciated that SPI memories 220 and 230 of
FIG. 2C may be used in an alternate embodiment.

Ininitial operation 402, PROGRAMN pin 122 is toggled or
a JTAG refresh instruction 116 is received by PLD 100 to
trigger an attempted loading of configuration data into con-
figuration memory 150 of PLD 100. It will be appreciated that
prior to the performance of operation 402, configuration data
may have been previously loaded into PLD 100 in accordance
with FIG. 3 described above. In one embodiment, the value of
the control bit (i.e., bit 26) of control register 104 may be
determined by such configuration data. For example, the
value of the control bit may be set by a user in primary boot
data 244 and/or golden boot data 246 previously loaded into
PLD 100 and programmed in accordance with the process of
FIG. 3. In this regard, the control bit of control register 104
may be used to determine from which memory block con-
figuration data is loaded in response to operation 402.

In operation 404, the control bit of control register 104 may
be evaluated. If the control bit corresponds to a first logic state
(e.g., a“0” value), then PLD 100 will attempt to load primary
boot data 244 from Block 1 of SPI memory 240. In this case,
counter 114 is set to zero and SPI controller 102 determines
the address of Block 1 of SPI memory 240 (operation 406).
SPI controller 102 then provides SPI memory 240 with a chip
select signal, a read opcode, as well as the memory address
determined in operation 406 (operation 408). Following
operation 408, PL.D 100 attempts to read in primary boot data
244 from SPI memory 240 (operation 410).

Referring again to operation 404, if the control bit of con-
trol register 104 corresponds to a second logic state (e.g., a
“1” value), then PLD 100 will attempt to load configuration
data from a memory block specified by the values of SP1_SEL
signal 110 and SPI_ADDR bus 112 which are provided by
user logic 106. In this regard, SPI_SEL signal 110 may deter-
mine whether configuration data is loaded from SPI memory
240 or 250. For example, if SP1_SEL signal 110 corresponds
to a first logic state (e.g., a “0” value), then SPI memory 250
may be selected. Alternatively, if SPI_SEL signal 110 corre-
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sponds to a second logic state (e.g., a “1” value), then SPI
memory 240 may be selected. SPI_ADDR bus 112 may
specify the address of a particular memory block of SPI
memory 240 or 250 from which configuration data is to be
loaded. In one embodiment, SPI_ADDR bus 112 may be
implemented as an 8-bit bus. In such an embodiment, the 8-bit
address provided by SPI_ADDR bus 112 may correspond to
the most significant bits of a desired memory block of SPI
memory 240 or 250. For example, if the memory blocks are
implemented as 512 K blocks, the 8-bit address provided by
SPI_ADDR bus 112 may correspond to the 8 most significant
bits of a 24-bit address.

Accordingly, in operation 412, counter 114 will be set to
zero and SPI controller 102 will capture the values of
SPI_SEL signal 110 and SPI_ADDR bus 112. If SPI_SEL
signal 110 corresponds to a 1 value, then operations 408 and
410 are performed using the memory address captured in
previous operation 412. As a result, SPI controller 102 will
attempt to read the alternate configuration data (also labeled
Alternate Config Data) stored in the particular memory block
of SPI memory 240 that corresponds to the address provided
to SPI_ADDR bus 112 by user logic 106.

If, in operation 414, SPI_SEL signal 110 corresponds to a
0 value, then the process proceeds to operation 416 where SPI
controller 102 provides SPI memory 250 with a chip select
signal, a read opcode, and the memory address determined in
operation 412. In operation 418, SPI controller 102 attempts
to read in the configuration data (i.e., alternate configuration
data) stored in the particular memory block of SPI memory
250 corresponding to the address previously captured in
operation 412.

In operation 420, SPI controller 102 detects whether a
configuration data preamble has been received from SPI
memory 240 in response to previous operation 410 or from
SPI memory 250 in response to previous operation 418. If no
preamble is detected, then SPI controller 102 continues to
wait for up to 16K clock cycles (operation 422) until a valid
preamble is received. If no preamble is received, then SPI
controller 102 may assume that SPI memory 240 or 250 is
erased or non-responsive. As a result, the process of FIG. 4
will continue on to operation 446 further described herein.

However, if a valid preamble is detected in operation 420,
then SPI controller 102 will next determine whether the data
read in previous operation 410 or 418 corresponds to a JUMP
command (operation 428). If no JUMP command is found,
then the process of FIG. 4 will continue on to operation 438.
If a JUMP command is detected in operation 420, then the
process will proceed to operation 430 as further described
herein.

Inoperation 438, PLD 100 continues reading configuration
data from the particular memory block specified in previous
operation 410 or 418, and begins configuring PLD 100 by
programming configuration memory 150 with the configura-
tion data. In operation 440, PLD 100 checks the incoming
configuration data for errors in the manner previously
described in relation to operation 320 of FIG. 3. If no errors
are detected, then DONE pin 128 is released (operation 442)
which allows PLD 100 to wake up and the process of FIG. 4
will end with PLD 100 operating in accordance with the
newly loaded configuration data (operation 444). However, if
an error is detected during operation 440, then the process
proceeds to operation 446 where counter 114 is incremented.

Thereafter, in operation 448, PLD 100 will determine
whether the value of counter 114 is greater than one. As
previously discussed, the value of counter 114 is set to zero in
either operation 406 or 412. Accordingly, if operation 446 has
been performed only once, then the value of counter 114 will
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be equal to one and the process will continue on to operation
450. However, if operation 446 has been performed more than
once, then the value of counter 114 will be greater than one. In
such case, the process will proceed to operation 454 where
SPI controller 102 drives INI'TN pin 126 low and the process
of FIG. 4 will end (operation 456).

In operation 450, SPI controller 102 provides SPI memory
240 with a chip select signal, a read opcode, and a memory
address corresponding to the beginning of Block 0. Following
operation 450, PLD 100 attempts to read in the contents of
Block 0 from SPI memory 240 (operation 452) and then
returns to operation 420. In this second iteration of operation
420, SPI controller 102 detects whether a configuration data
preamble has been received from SPI memory 240 in
response to previous read operation 452. If no preamble is
detected, then SPI controller 102 may proceed to operation
422 as previously described herein.

If a valid preamble is detected (operation 420), then SPI
controller 102 will determine whether the data read in previ-
ous read operation 452 corresponds to a JUMP command. As
previously described, Block 0 of SPI memory 240 may hold
JUMP command 242 which references Block X where
golden boot data 246 is stored. Alternatively, in an embodi-
ment where SPI memories 220 and 230 of FIG. 2C are used in
place of SPImemories 240 and 250, Block 0 may hold golden
boot data 222, and no JUMP command is used. If no JUMP
command is detected (operation 428), then the process of
FIG. 4 may continue on to operation 438 and subsequent
operations as previously described herein. However, if Block
0 contains JUMP command 242, the process will proceed to
operation 430.

In operation 430, SPI controller 102 reads the address of
Block X of SPI memory 240 from JUMP command 242
previously read from Block 0 in operation 452. SPI controller
102 then provides a chip select signal to SPI memory 240
(operation 432), sends a read opcode and the memory address
of' Block X to SPI memory 240 (operation 434), and attempts
to read in golden boot data 246 from Block X of SPI memory
240 (operation 436). The process then returns to operation
420.

In this third iteration of operation 420, SPI controller 102
detects whether a configuration data preamble has been
received from SPI memory 240 in response to previous read
operation 436. Again, if no preamble is detected, then SPI
controller 102 may proceed to operation 422 as previously
described herein. If a valid preamble is detected (operation
420), then SPI controller 102 will determine whether the data
read in previous operation 436 corresponds to a JUMP com-
mand. As indicated in FIG. 4, Block X contains golden boot
data 246. As a result, PLD 100 will again attempt to configure
itself using the newly loaded golden boot data 246 (operation
438). If the configuration is successful (operation 440), then
the process of FIG. 4 continues on to operations 442 and 444
as previously described herein.

If an error is detected in golden boot data 246 (operation
440), then counter 114 will again be incremented to exhibit a
value of two. Thereafter, when counter 114 is evaluated in
operation 448, the process will proceed to operations 454 and
456 as previously described herein.

In view of the foregoing, it will be appreciated that one or
more of the various techniques described herein can be uti-
lized to selectively load configuration data from various
memory blocks of a plurality of SPI memories. Advanta-
geously, PLD 100 can be implemented to load default con-
figuration data (i.e., golden boot data) in the event that pri-
mary boot data and/or one or more alternate configuration
data patterns are corrupted, erased, or otherwise unavailable.
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Reconfiguration of PLD 100 may also be performed using
configuration data read from a particular memory block
selected by user logic.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of'the invention is defined only by the following claims.

We claim:

1. A method of configuring a programmable logic device
having volatile configuration memory, the method compris-
ing:

reading a first bitstream from a first memory block of

non-volatile memory;

detecting whether the first bitstream contains a valid pre-

amble as the first bitstream is read from the non-volatile
memory and before configuration data in the first bit-
stream is programmed into the volatile configuration
memory;

if a valid preamble is detected in the first bitstream, pro-

gramming the volatile configuration memory with con-
figuration data in the first bitstream; and

if a valid preamble is not detected in the first bitstream,

reading a second bitstream from a second memory block
of the non-volatile memory.

2. The method of claim 1 including:

detecting whether the second bitstream contains a valid

preamble as the second bitstream is read from the non-
volatile memory and before configuration data in the
second bitstream is programmed into the volatile con-
figuration memory; and

programming the volatile configuration memory with con-

figuration data in the second bitstream if a valid pre-
amble is detected in the second bitstream.
3. The method of claim 1, wherein a valid preamble is
determined not detected in the first bitstream when no valid
preamble is received from the first bitstream a certain number
of clock cycles after the detecting is initiated.
4. The method of claim 1 including:
if a valid preamble is detected in the first bitstream:
checking the first bitstream for errors as the configura-
tion data is programmed into the volatile configura-
tion memory; and
if an error is detected by the checking of the first bit-
stream, reading the second bitstream from the second
memory block of the non-volatile memory.
5. The method of claim 1, wherein the first bitstream com-
prises primary boot data and the second bitstream comprises
default boot data for the programmable logic device.
6. The method of claim 1, wherein if a valid preamble is not
detected in the first bitstream:
prior to reading of the second bitstream, reading a third
bitstream from a third memory block of the non-volatile
memory, wherein the third bitstream contains a jump
command to the address of the second memory block;

detecting whether the third bitstream contains a valid pre-
amble as the third bitstream is read from the non-volatile
memory and before executing the jump command; and

executing the jump command if a valid preamble is
detected in the third bitstream.

7. The method of claim 1, wherein the method is performed
in response to one of a powering up of the programmable
logic device and an instruction received by the programmable
logic device.
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8. The method of claim 1, wherein the non-volatile
memory is an external memory device.

9. A programmable logic device comprising:

configuration memory adapted to store configuration data

to configure the programmable logic device for its
intended function; and

a controller adapted to:

read a first bitstream from a first memory block of non-
volatile memory;

detect whether the first bitstream contains a valid pre-
amble as the first bitstream is read from the non-
volatile memory and before configuration data in the
first bitstream is programmed into the volatile con-
figuration memory;

program the volatile configuration memory with con-
figuration data in the first bitstream if a valid preamble
is detected in the first bitstream; and

read a second bitstream from a second memory block of
the non-volatile memory if a valid preamble is not
detected in the first bitstream.

10. The programmable logic device of claim 9, wherein the
controller is further adapted to determine that a valid pre-
amble is not detected in the first bitstream when no valid
preamble is received from the first bitstream a certain number
of clock cycles after the detecting is initiated.

11. The programmable logic device of claim 9, wherein the
controller is further adapted to:

detect whether the second bitstream contains a valid pre-

amble as the second bitstream is read from the non-
volatile memory and before configuration data in the
second bitstream is programmed into the volatile con-
figuration memory; and

12

program the volatile configuration memory with configu-
ration data in the second bitstream if a valid preamble is
detected in the second bitstream.

12. The programmable logic device of claim 9, wherein the

5 controller is further adapted to:

if a valid preamble is detected in the first bitstream, check
the first bitstream for errors as the configuration data is
programmed into the volatile configuration memory;
and

ifan error is detected by the checking of the first bitstream,
read the second bitstream from the second memory
block of the non-volatile memory.

13. The programmable logic device of claim 9, wherein the

controller is further adapted to:

prior to reading the second bitstream, read a third bitstream
from a third memory block of the non-volatile memory,
wherein the third bitstream contains a jump command to
the address of the second memory block;

detect whether the third bitstream contains a valid pre-
amble as the third bitstream is read from the non-volatile
memory and before executing the jump command; and

execute the jump command if a valid preamble is detected
in the third bitstream.

14. The programmable logic device of claim 9, wherein the

5 . . .
non-volatile memory is an external memory device.

15. The programmable logic device of claim 9, wherein the
controller is a bus interface controller.



