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ABSTRACT 

In one embodiment of the invention, a programmable logic 
device includes configuration memory and a controller. The 
controller can read a first bitstream from a first memory block 
of non-volatile memory and detect whether the first bitstream 
contains a valid preamble as the first bitstream is read from 
the non-volatile memory and before configuration data in the 
first bitstream is programmed into the Volatile configuration 
memory. If a valid preamble is detected in the first bitstream, 
the controller programs the configuration memory with con 
figuration data in the first bitstream. If a valid preamble is not 
detected in the first bitstream, the controller reads a second 
bitstream from a second memory block of the non-volatile 
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PROGRAMMABLE LOGIC DEVICE AND 
METHODS FOR PROVIDING MULT-BOOT 

CONFIGURATION DATA SUPPORT 

RELATED APPLICATION DATA 

This application is a continuation of U.S. application Ser. 
No. 1 1/447,591, filed Jun. 6, 2006, which is incorporated 
herein by reference in its entirety. 

TECHNICAL FIELD 

The present invention relates generally to electrical circuits 
and, more particularly, to the configuration of programmable 
logic devices. 

BACKGROUND 

Programmable logic devices (PLDs), such as field pro 
grammable gate arrays (FPGAs) or complex programmable 
logic devices (CPLDs), may be programmed with configura 
tion data to provide various user-defined features. In certain 
applications, configuration data may be programmed into an 
external non-volatile memory Such as a flash memory. The 
configuration data may be loaded from the external non 
volatile memory into the PLD and programmed into volatile 
configuration memory of the PLD upon power-up, in 
response to an appropriate instruction, or in response to the 
toggling of an appropriate pin of the PLD. When a user 
desires to change the behavior of the PLD, the external non 
Volatile memory may be erased and reprogrammed with new 
configuration data that is subsequently loaded into the PLD. 

Unfortunately, the above approach presents several poten 
tial problems for reliable PLD operation. Specifically, if the 
configuration data stored in the external non-volatile memory 
becomes corrupted oran erroneous configuration data pattern 
is loaded into the external non-volatile memory, then the 
operation of the PLD may become inoperable or exhibit 
unpredictable behavior after the PLD is programmed with the 
configuration data pattern. Similarly, if an otherwise valid 
configuration data pattern is improperly programmed or 
reprogrammed into the PLD or the external non-volatile 
memory as a result of for example, a power failure, then the 
operation of the PLD may be likewise affected. Accordingly, 
there is a need for an improved approach to the loading of 
PLD configuration data that, for example, reduces the likeli 
hood of erroneous configuration data being loaded into con 
figuration memory of the PLD. 

SUMMARY 

In one embodiment of the invention, a method of config 
uring a programmable logic device includes reading a first 
bitstream from a first memory block of non-volatile memory 
and detecting whether the first bitstream contains a valid 
preamble as the first bitstream is read from the non-volatile 
memory and before configuration data in the first bitstream is 
programmed into the Volatile configuration memory. If a valid 
preamble is detected in the first bitstream, the configuration 
memory is programmed with configuration data in the first 
bitstream. If a valid preamble is not detected in the first 
bitstream, a second bitstream is read from a second memory 
block of the non-volatile memory. 

In another embodiment of the invention, a programmable 
logic device includes configuration memory and a controller. 
The controller can read a first bitstream from a first memory 
block of non-volatile memory and detect whether the first 
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2 
bitstream contains a valid preamble as the first bitstream is 
read from the non-volatile memory and before configuration 
data in the first bitstream is programmed into the volatile 
configuration memory. If a valid preamble is detected in the 
first bitstream, the controller programs the configuration 
memory with configuration data in the first bitstream. If a 
valid preamble is not detected in the first bitstream, the con 
troller reads a second bitstream from a second memory block 
of the non-volatile memory. 
The scope of the invention is defined by the claims, which 

are incorporated into this section by reference. A more com 
plete understanding of embodiments of the present invention 
will be afforded to those skilled in the art, as well as a real 
ization of additional advantages thereof, by a consideration of 
the following detailed description of one or more embodi 
ments. Reference will be made to the appended sheets of 
drawings that will first be described briefly. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates a block diagram of an exemplary pro 
grammable logic device (PLD) and a plurality of external 
non-volatile memory devices in accordance with an embodi 
ment of the present invention. 

FIGS. 2A-D illustrate block diagrams of alternative 
embodiments of the external non-volatile memory devices of 
FIG 1. 

FIG. 3 illustrates a process of loading configuration data 
into the PLD of FIG. 1 in response to a power on reset 
operation in accordance with an embodiment of the present 
invention. 

FIG. 4 illustrates a process of loading configuration data 
into the PLD of FIG. 1 in response to the toggling of a pin or 
the receipt of an appropriate instruction in accordance with an 
embodiment of the present invention. 

Embodiments of the present invention and their advantages 
are best understood by referring to the detailed description 
that follows. It should be appreciated that like reference 
numerals are used to identify like elements illustrated in one 
or more of the figures. 

DETAILED DESCRIPTION 

The various techniques disclosed herein are applicable to a 
wide variety of integrated circuits and applications. As an 
exemplary implementation, a programmable logic device 
(PLD) will be utilized to illustrate the techniques in accor 
dance with one or more embodiments of the present inven 
tion. However, it should be understood that this is not limiting 
and that the techniques disclosed herein may be implemented 
as desired, in accordance with one or more embodiments of 
the present invention, within various types of circuits. 

FIG. 1 illustrates a programmable logic device (PLD) 100 
which may be implemented as a field programmable gate 
array (FPGA) as shown in FIG. 1, a complex programmable 
logic device (CPLD), or other appropriate PLD as may be 
desired in particular applications. 
PLD 100 may be provided in this embodiment of the inven 

tion with a Serial Peripheral Interface (SPI) port 124 that is 
supported by a SPI controller 102 and a plurality of SPI pins 
118 and 120 (labeled SISPI, CCLK, CSSPION, SPID0, 
CSSPI1N/DOUT, SPID1, and SPIFASTN) to facilitate inter 
facing PLD 100 with external SPI-compatible devices. As 
understood by those skilled in the art, SPI is a serial bus 
standard established by Motorola Corporation and supported 
in silicon products from various manufacturers. In other 
embodiments of the invention, other serial or parallel bus 
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interfaces may be used. SPI pin 120 may configure SPI con 
troller102 to operate SPI pins 118 at various alternate speeds. 
For example, in one embodiment, SPI pins 118 may operate at 
speeds up to approximately 20 MHz if SPI pin 120 exhibits a 
first logic state, and may operate at speeds in the range of 
approximately 50-85 MHz if SPI pin 120 exhibits a second 
logic state. A PROGRAMN pin 122 may be used to trigger a 
loading of configuration data from an external non-volatile 
memory as further described herein. SPI controller 102 also 
supports an INITN pin 126 and a DONE pin 128 which may 
be used to indicate the configuration status of PLD 100 as 
further described herein. 
PLD 100 also includes a control register 104, a plurality of 

user logic 106, a common interface block (CIB) 108, a 
counter 114, and a JTAG block 116, all of which may be used 
by SPI controller 102 in the loading of configuration data 
from external SPI-compatible devices. In this regard, control 
register 104 stores a control bit value set by a user as part of 
configuration data loaded into PLD 100 and may be used by 
SPI controller 102 to determine the boot sequence of PLD 100 
as further described herein. In one embodiment, control reg 
ister 104 may be implemented as a 32 bit register with bit 26 
providing the control bit value as illustrated in FIG. 1. How 
ever, it will be appreciated that other implementations of the 
control bit are also contemplated using, for example, other 
bits of control register 104, other registers, and/or other bit 
storage techniques. 

User logic 106 is user-defined logic that is determined by 
the particular configuration data previously loaded and pro 
grammed into PLD 100. CIB108 facilitates the interfacing of 
user logic 106 with SPI controller 102 through a SPI SEL 
signal 110 and a SPI ADDR bus 112 which may be deter 
mined by user logic 106. Counter 114 is used by PLD 100 
during its boot sequence to aid PLD 100 in determining 
whether configuration data has been properly loaded into 
PLD 100. JTAG block 116 provides a refresh instruction to 
SPI controller 102 which may be received through a JTAG 
port of PLD 100. 
As illustrated, SPI pins 118 may interface with devices 

external to PLD 100, such as for example SPI memories 130 
and 140 (i.e., through standard SPI pins labeled D. C. S, and 
Q as shown in FIG. 1). Each of SPI memories 130 and 140 
may be implemented as non-volatile memories (for example, 
flash memories, EEPROMs, EPROMs, PROMs, or ROMs) 
and may include a plurality of memory blocks 132 (labeled 
Block 0,1,X,Y, and Z) and 142 (labeled Block 0, A, B, C, and 
D), respectively. Each of memory blocks 132 and 142 may 
store a configuration data pattern which may be loaded into 
PLD 100 through the use of SPI pins 118 and programmed 
into configuration memory 150 (for example, volatile SRAM 
memory) of PLD 100. In one embodiment, individual 
memory blocks 132 and 142 of SPI memories 130 and 140 
may comprise approximately 512 Kbytes. 

It will be appreciated that other embodiments of the inven 
tion may include other serial or parallel bus interfaces and 
their compatible serial and parallel non-volatile memories. 

For example, Block 0 of SPI memory 130 holds configu 
ration data referred to as golden boot data 134 (also referred 
to as default boot data) that, when programmed into configu 
ration memory 150 of PLD 100, will cause PLD 100 to 
operate in a known stable state. Block 1 of SPI memory 130 
holds configuration data referred to as primary boot data 136 
that may be loaded upon power up of PLD 100. This block 
may also be selectively erased and reprogrammed by a user, 
thereby allowing PLD 100 to be reconfigured with an updated 
version of primary boot data 136 when powered up. The 
remaining blocks of SPI memories 130 and 140 may option 
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4 
ally hold various alternate sets of configuration data which 
may also be erased, reprogrammed, and/or selected for load 
ing into PLD 100. 
PLD 100 may be implemented to load primary boot data 

136 of Block 1 when PLD 100 is powered on. If primary boot 
data 136 of Block 1 fails to properly load (for example, as a 
result of a power failure during loading or corruption of 
primary boot data 136 occurring during erasure or reprogram 
ming of SPI memory 130), SPI controller 102 may automati 
cally load a default set of golden boot data 134 from Block 0 
of SPI memory 130. Advantageously, such an implementa 
tion can provide PLD 100 with the opportunity to return to a 
known operable state in the event of such failures. 

Various other configurations of SPI memories 130 and 140 
are also contemplated as illustrated in the block diagrams of 
FIGS. 2A-D. It will be appreciated that the various SPI 
memories illustrated in FIGS. 2A-D may be implemented as 
various alternate embodiments of SPI memory 130 and 140 
previously described with regard to FIG.1. For example, FIG. 
2A illustrates a SPI memory 200 implemented with a mini 
mum of approximately 1 Megabyte of flash memory. Golden 
boot data 202, having a maximum of approximately 512 
Kbytes, is stored in Block 0 and primary boot data 204 is 
stored in Block 1. The remaining memory space 206 of SPI 
memory 200 may be unused. 

FIG. 2B illustrates a SPI memory 210 implemented with a 
minimum of approximately 2 Megabytes of flash memory. 
Block 0 of SPI memory 210 is configured to store a JUMP 
command 212 which references golden boot data 216 stored 
in Block X of SPI memory 210. Block 1 of SPI memory 210 
stores primary boot data 214 which may span Block 1 through 
additional blocks (not shown) up to Block X. In this regard, it 
will be appreciated that in embodiments where each of pri 
mary boot data 214 and golden boot data 216 exceed the size 
of a single memory block (for example, larger than 512 
Kbytes), then golden boot data 216 may be stored at Block X 
to allow primary boot data 214 to be stored in Block 1. As 
illustrated, any remaining memory space 218 of SPI memory 
210 may be unused. 

FIG. 2C illustrates SPI memories 220 and 230 each imple 
mented with a minimum of approximately 2 Megabytes of 
flash memory. Similar to SPI memory 130 of FIG. 1 and SPI 
memory 200 of FIG. 2A, Block 0 of SPI memory 220 is 
configured to store golden boot data 222 having a maximum 
of approximately 512 Kbytes. Primary boot data 224 is stored 
in Block 1. Various alternate configuration data patterns are 
stored in the remaining Blocks X and Y of SPI memory 220 
and optionally in Blocks 0, A, B, and C of SPI memory 230. 
Similar to SPI memories 200 and 210 described above, one or 
both of SPI memories 220 and 230 may also include unused 
memory space in any of the various memory blocks illus 
trated in FIG. 2C. 

FIG. 2D illustrates SPI memories 240 and 250 each imple 
mented with a minimum of approximately 2 Megabytes of 
flash memory. Similar to SPI memory 210 of FIG.2B, Block 
0 of SPI memory 240 is configured to store a JUMP command 
242 which references golden boot data 246 stored in Block X 
of SPI memory 240. Block 1 of SPI memory 240 stores 
primary boot data 244 which may span Block 1 through 
additional blocks (not shown) up to Block X. Alternate con 
figuration data patterns are stored in the remaining BlockSY 
and Z of SPI memory 240 and optionally in Blocks 0, A, B, C, 
and D of SPI memory 250. Similar to SPI memories 200,210, 
220, and 230 described above, one or both of SPI memories 
240 and 250 may also include unused memory space in any of 
the various memory blocks illustrated in FIG. 2D. 
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FIG. 3 illustrates a process of loading configuration data 
into PLD 100 in response to a power on reset operation in 
accordance with an embodiment of the present invention. As 
further described herein, FIG.3 sets forth an iterative process 
that may be implemented by PLD 100 to attempt the loading 
of appropriate configuration data from different blocks of SPI 
memory 210. Specifically, PLD 100 first attempts to load a set 
of primary boot data from a particular memory block. Iferrors 
are encountered during loading, then PLD 100 attempts to 
load a set of golden boot data from a default memory block. 
PLD 100 may also load the set of golden boot data from 
another memory block if instructed by an appropriate com 
mand detected in the default memory block. Although the 
process of FIG. 3 will be described with reference to SPI 
memory 210, it will be appreciated that SPI memory 200 of 
FIG. 2A may be used in an alternate embodiment. 

Turning now to the particulars of FIG. 3, a power on reset 
(FOR) operation is performed on PLD 100 at initial operation 
302. In this regard, PLD 100 may initially be in an unpowered 
state prior to the process of FIG.3, and then be powered up in 
response to operation 302. 

In operation 304, counter 114 is set to Zero, and SPI con 
troller 102 sends a plurality of signals to SPI memory 210 
over SPI pins 118. Specifically, SPI controller 102 may pro 
vide a chip select signal from one of SPI pins 118 labeled 
CSSPION in order to select SPI memory 210. SPI controller 
102 may also provide a read opcode and a memory address 
corresponding to the beginning of Block 1 in a serial fashion 
from one of SPI pins 118 labeled SISPI. In this regard, SPI 
controller 102 may be implemented to permanently store the 
address of Block 1. As previously described, Block 1 of SPI 
memory 210 may hold primary boot data 214 which may be 
loaded into PLD 100 in order to configure PLD 100 upon 
power up. Accordingly, following operation 304, PLD 100 
may attempt to read in primary boot data 214 (also labeled 
Current or New Config Data) from SPI memory 210 (opera 
tion 306). It will be appreciated that primary boot data 214 
may be loaded as a serial bitstream provided to SPI controller 
102 over one of SPI pins 118 labeled SPID0. It will be further 
appreciated that where PLD 100 is implemented with a par 
allel bus interface, data may be loaded as a parallel bitstream 
(for example, with simultaneous loading of 8 data bits at a 
time through the parallel bus interface). 

In operation 308, SPI controller 102 detects whether a 
configuration data preamble has been received from SPI 
memory 210. In this regard, SPI controller 102 may be con 
figured to recognize a particular sequence of bit values (for 
example, a 16 bit opcode) that is included at the beginning of 
a valid configuration data bitstream. If no preamble is 
detected, then SPI controller 102 continues to wait for up to 
16K clock cycles (operation 310) until a valid preamble is 
received. If no preamble is received, then SPI controller 102 
may assume that SPI memory 210 is erased or non-respon 
sive. As a result, the process of FIG. 3 will continue on to 
operation 326 further described herein. 

However, if a valid preamble is detected in operation 308, 
then SPI controller 102 will next determine whether the con 
figuration data read in previous operation 306 corresponds to 
a JUMP command (operation 316). As previously described, 
JUMP command 212 may be provided in Block 0 of SPI 
memory 210 which references Block X where golden boot 
data 216 is stored. 

If, as illustrated in FIG. 3, Block 1 of SPI memory 210 
includes primary boot data 214 which was read in operation 
306, then no JUMP command will be found and the process of 
FIG.3 will continue on to operation 318. If a JUMP command 
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6 
is detected in operation 316, then the process will proceed to 
operation 334 as further described herein. 

In operation 318, PLD 100 continues reading primary boot 
data 214 and begins configuring PLD 100 by programming 
configuration memory 150 of PLD 100 with primary boot 
data 214. In operation 320, PLD 100 checks incoming pri 
mary boot data 214 for errors. For example, in one embodi 
ment, operation 320 may include comparing 8 bit frames of 
the configuration data against cyclic redundancy codes 
(CRCs) embedded in the configuration data bitstream. If no 
errors are detected, then DONE pin 322 is released (operation 
322) which allows PLD 100 to wake up and the process of 
FIG. 3 will end with PLD 100 operating in accordance with 
the newly loaded configuration data (operation 324). How 
ever, if an error is detected during operation 320, then the 
process proceeds to operation 326 where counter 114 is incre 
mented. 

Thereafter, in operation 328, PLD 100 will determine 
whether the value of counter 114 is greater than one. As 
previously discussed, the value of counter 114 is set to zero in 
operation 304. Accordingly, if operation 326 has been per 
formed only once, then the value of counter 114 will be equal 
to one and the process will continue on to operation 330. 
However, if operation 326 has been performed more than 
once, then the value of counter 114 will be greater than one. In 
such case, the process will proceed to operation 338 where 
SPI controller 102 drives INITN pin 126 low, and the process 
of FIG. 3 will end (operation 340). 

In operation330, SPI controller102 sends another plurality 
of signals to SPI memory 210 which include a chip select 
signal, a read opcode, and a memory address corresponding 
to the beginning of Block 0. As previously described, Block 0 
of SPI memory 210 may hold JUMP command 212 which 
references Block X where golden boot data 216 is stored. 
Alternatively, in an embodiment where SPI memory 200 of 
FIG. 2A is used in place of SPI memory 210, Block 0 may 
hold golden boot data 202, and no JUMP command is used. 

Following operation 330, SPI controller 102 attempts to 
read in the contents of Block 0 from SPI memory 210 (opera 
tion 332) and the process then returns to operation 308. In this 
seconditeration of operation 308, SPI controller 102 attempts 
to detect whether a configuration data preamble has been 
received from SPI memory 210 in response to previous read 
operation 332. If no preamble is detected, then SPI controller 
102 may proceed to operation 310 as previously described 
herein. If a valid preamble is detected (operation 308), then 
SPI controller102 will determine whether the data received in 
response to previous read operation 332 corresponds to a 
JUMP command. It will be appreciated that because Block 0 
contains JUMP command 212, the process will proceed to 
operation 334. 

In operation 334, SPI controller 102 sends a further plural 
ity of signals to SPI memory 210 which include a chip select 
signal, a read opcode, and a memory address corresponding 
to the beginning of Block X (which may be included in the 
JUMP command read in previous operation 332). Accord 
ingly, following operation 334, PLD 100 may attempt to read 
in golden boot data 216 (also labeled Root Data) from SPI 
memory 210 (operation336) and then return to operation 308. 

In this third iteration of operation 308, SPI controller 102 
detects whether a configuration data preamble has been 
received from SPI memory 210 in response to previous read 
operation 336. Again, if no preamble is detected, then SPI 
controller 102 may proceed to operation 310 as previously 
described herein. If a valid preamble is detected (operation 
308), then SPI controller 102 will determine whether the data 
read in previous operation 336 corresponds to a JUMP com 
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mand. As indicated in FIG. 3, Block X contains valid golden 
boot data 216. As a result, PLD 100 will attempt to configure 
itself using the newly loaded golden boot data 216 (operation 
318). If the configuration is successful (operation 320), then 
the process of FIG. 3 continues on to operations 322 and 324 
as previously described herein. 

If an error is detected in golden boot data 216 (operation 
320), then counter 114 will be incremented to now exhibit a 
value of two. Thereafter, when counter 114 is evaluated in 
operation 328, the process will proceed to operations 338 and 
340 as previously described herein. 

In view of the foregoing, it will be appreciated that PLD 
100 may be configured with primary boot data 214 or, in the 
case of a detected error, with golden boot data 216 referenced 
by JUMP command 212. It will further be appreciated that 
where SPI memory 200 is used in place of SPI memory 210, 
golden boot data 202 may be loaded directly from Block 0 of 
SPI memory 200. 

FIG. 4 illustrates a process of loading configuration data 
into PLD 100 in response to the toggling of PROGRAMNpin 
122 or the receipt of an appropriate JTAG instruction in 
accordance with an embodiment of the present invention. 
Similar to FIG. 3, FIG. 4 sets forth an iterative process that 
may be implemented by PLD 100 to attempt the loading of 
appropriate configuration data from particular memory 
blocks of SPI memory 240 or 250. Advantageously, the par 
ticular memory blocks read by PLD 100 in FIG.4 may also be 
specified by user logic 106. Although the process of FIG. 4 
will be described with reference to SPI memories 240 and 
250, it will be appreciated that SPI memories 220 and 230 of 
FIG. 2C may be used in an alternate embodiment. 

In initial operation 402, PROGRAMNpin 122 is toggled or 
a JTAG refresh instruction 116 is received by PLD 100 to 
trigger an attempted loading of configuration data into con 
figuration memory 150 of PLD 100. It will be appreciated that 
prior to the performance of operation 402, configuration data 
may have been previously loaded into PLD 100 in accordance 
with FIG.3 described above. In one embodiment, the value of 
the control bit (i.e., bit 26) of control register 104 may be 
determined by Such configuration data. For example, the 
value of the control bit may be set by a user in primary boot 
data 244 and/or golden boot data 246 previously loaded into 
PLD 100 and programmed in accordance with the process of 
FIG. 3. In this regard, the control bit of control register 104 
may be used to determine from which memory block con 
figuration data is loaded in response to operation 402. 

In operation 404, the control bit of control register 104 may 
be evaluated. If the control bit corresponds to a first logic state 
(e.g., a “0” value), then PLD 100 will attempt to load primary 
boot data 244 from Block 1 of SPI memory 240. In this case, 
counter 114 is set to Zero and SPI controller 102 determines 
the address of Block 1 of SPI memory 240 (operation 406). 
SPI controller 102 then provides SPI memory 240 with a chip 
select signal, a read opcode, as well as the memory address 
determined in operation 406 (operation 408). Following 
operation 408, PLD 100 attempts to read in primary boot data 
244 from SPI memory 240 (operation 410). 

Referring again to operation 404, if the control bit of con 
trol register 104 corresponds to a second logic state (e.g., a 
“1” value), then PLD 100 will attempt to load configuration 
data from a memory block specified by the values of SPI SEL 
signal 110 and SPI ADDR bus 112 which are provided by 
user logic 106. In this regard, SPI SEL signal 110 may deter 
mine whether configuration data is loaded from SPI memory 
240 or 250. For example, if SPI SEL signal 110 corresponds 
to a first logic state (e.g., a “0” value), then SPI memory 250 
may be selected. Alternatively, if SPI SEL signal 110 corre 
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sponds to a second logic state (e.g., a “1” value), then SPI 
memory 240 may be selected. SPI ADDR bus 112 may 
specify the address of a particular memory block of SPI 
memory 240 or 250 from which configuration data is to be 
loaded. In one embodiment, SPI ADDR bus 112 may be 
implemented as an 8-bit bus. In such an embodiment, the 8-bit 
address provided by SPI ADDR bus 112 may correspond to 
the most significant bits of a desired memory block of SPI 
memory 240 or 250. For example, if the memory blocks are 
implemented as 512 K blocks, the 8-bit address provided by 
SPI ADDRbus 112 may correspond to the 8 most significant 
bits of a 24-bit address. 

Accordingly, in operation 412, counter 114 will be set to 
Zero and SPI controller 102 will capture the values of 
SPI SEL signal 110 and SPI ADDR bus 112. If SPI_SEL 
signal 110 corresponds to a 1 value, then operations 408 and 
410 are performed using the memory address captured in 
previous operation 412. As a result, SPI controller 102 will 
attempt to read the alternate configuration data (also labeled 
Alternate Config Data) stored in the particular memory block 
of SPI memory 240 that corresponds to the address provided 
to SPI ADDR bus 112 by user logic 106. 

If, in operation 414, SPI SEL signal 110 corresponds to a 
0 value, then the process proceeds to operation 416 where SPI 
controller 102 provides SPI memory 250 with a chip select 
signal, a read opcode, and the memory address determined in 
operation 412. In operation 418, SPI controller 102 attempts 
to read in the configuration data (i.e., alternate configuration 
data) stored in the particular memory block of SPI memory 
250 corresponding to the address previously captured in 
operation 412. 

In operation 420, SPI controller 102 detects whether a 
configuration data preamble has been received from SPI 
memory 240 in response to previous operation 410 or from 
SPI memory 250 in response to previous operation 418. If no 
preamble is detected, then SPI controller 102 continues to 
wait for up to 16K clock cycles (operation 422) until a valid 
preamble is received. If no preamble is received, then SPI 
controller 102 may assume that SPI memory 240 or 250 is 
erased or non-responsive. As a result, the process of FIG. 4 
will continue on to operation 446 further described herein. 

However, if a valid preamble is detected in operation 420, 
then SPI controller 102 will next determine whether the data 
read in previous operation 410 or 418 corresponds to a JUMP 
command (operation 428). If no JUMP command is found, 
then the process of FIG. 4 will continue on to operation 438. 
If a JUMP command is detected in operation 420, then the 
process will proceed to operation 430 as further described 
herein. 

In operation 438, PLD 100 continues reading configuration 
data from the particular memory block specified in previous 
operation 410 or 418, and begins configuring PLD 100 by 
programming configuration memory 150 with the configura 
tion data. In operation 440, PLD 100 checks the incoming 
configuration data for errors in the manner previously 
described in relation to operation 320 of FIG. 3. If no errors 
are detected, then DONE pin 128 is released (operation 442) 
which allows PLD 100 to wake up and the process of FIG. 4 
will end with PLD 100 operating in accordance with the 
newly loaded configuration data (operation 444). However, if 
an error is detected during operation 440, then the process 
proceeds to operation 446 where counter 114 is incremented. 

Thereafter, in operation 448, PLD 100 will determine 
whether the value of counter 114 is greater than one. As 
previously discussed, the value of counter 114 is set to zero in 
either operation 406 or 412. Accordingly, ifoperation 446 has 
been performed only once, then the value of counter 114 will 
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be equal to one and the process will continue on to operation 
450. However, ifoperation 446 has been performed more than 
once, then the value of counter 114 will be greater than one. In 
such case, the process will proceed to operation 454 where 
SPI controller 102 drives INITN pin 126 low and the process 5 
of FIG. 4 will end (operation 456). 

In operation 450, SPI controller 102 provides SPI memory 
240 with a chip select signal, a read opcode, and a memory 
address corresponding to the beginning of Block0. Following 
operation 450, PLD 100 attempts to read in the contents of 10 
Block 0 from SPI memory 240 (operation 452) and then 
returns to operation 420. In this second iteration of operation 
420, SPI controller 102 detects whether a configuration data 
preamble has been received from SPI memory 240 in 
response to previous read operation 452. If no preamble is 15 
detected, then SPI controller 102 may proceed to operation 
422 as previously described herein. 

If a valid preamble is detected (operation 420), then SPI 
controller 102 will determine whether the data read in previ 
ous read operation 452 corresponds to a JUMP command. As 20 
previously described, Block 0 of SPI memory 240 may hold 
JUMP command 242 which references Block X where 
golden boot data 246 is stored. Alternatively, in an embodi 
ment where SPI memories 220 and 230 of FIG. 2C are used in 
place of SPI memories 240 and 250, Block 0 may hold golden 25 
boot data 222, and no JUMP command is used. If no JUMP 
command is detected (operation 428), then the process of 
FIG. 4 may continue on to operation 438 and subsequent 
operations as previously described herein. However, if Block 
0 contains JUMP command 242, the process will proceed to 30 
operation 430. 

In operation 430, SPI controller 102 reads the address of 
Block X of SPI memory 240 from JUMP command 242 
previously read from Block 0 in operation 452. SPI controller 
102 then provides a chip select signal to SPI memory 240 35 
(operation 432), sends a read opcode and the memory address 
of Block X to SPI memory 240 (operation 434), and attempts 
to read in golden boot data 246 from Block X of SPI memory 
240 (operation 436). The process then returns to operation 
420. 40 

In this third iteration of operation 420, SPI controller 102 
detects whether a configuration data preamble has been 
received from SPI memory 240 in response to previous read 
operation 436. Again, if no preamble is detected, then SPI 
controller 102 may proceed to operation 422 as previously 45 
described herein. If a valid preamble is detected (operation 
420), then SPI controller 102 will determine whether the data 
read in previous operation 436 corresponds to a JUMP com 
mand. As indicated in FIG. 4, Block X contains golden boot 
data 246. As a result, PLD 100 will again attempt to configure 50 
itself using the newly loaded golden boot data 246 (operation 
438). If the configuration is successful (operation 440), then 
the process of FIG. 4 continues on to operations 442 and 444 
as previously described herein. 

If an error is detected in golden boot data 246 (operation 55 
440), then counter 114 will again be incremented to exhibit a 
value of two. Thereafter, when counter 114 is evaluated in 
operation 448, the process will proceed to operations 454 and 
456 as previously described herein. 

In view of the foregoing, it will be appreciated that one or 60 
more of the various techniques described herein can be uti 
lized to selectively load configuration data from various 
memory blocks of a plurality of SPI memories. Advanta 
geously, PLD 100 can be implemented to load default con 
figuration data (i.e., golden boot data) in the event that pri- 65 
mary boot data and/or one or more alternate configuration 
data patterns are corrupted, erased, or otherwise unavailable. 

10 
Reconfiguration of PLD 100 may also be performed using 
configuration data read from a particular memory block 
selected by user logic. 

Embodiments described above illustrate but do not limit 
the invention. It should also be understood that numerous 
modifications and variations are possible in accordance with 
the principles of the present invention. Accordingly, the scope 
of the invention is defined only by the following claims. 

We claim: 
1. A method of configuring a programmable logic device 

having volatile configuration memory, the method compris 
ing: 

reading a first bitstream from a first memory block of 
non-volatile memory; 

detecting whether the first bitstream contains a valid pre 
amble as the first bitstream is read from the non-volatile 
memory and before configuration data in the first bit 
stream is programmed into the Volatile configuration 
memory; 

if a valid preamble is detected in the first bitstream, pro 
gramming the Volatile configuration memory with con 
figuration data in the first bitstream; and 

if a valid preamble is not detected in the first bitstream, 
reading a second bitstream from a second memory block 
of the non-volatile memory. 

2. The method of claim 1 including: 
detecting whether the second bitstream contains a valid 

preamble as the second bitstream is read from the non 
volatile memory and before configuration data in the 
second bitstream is programmed into the Volatile con 
figuration memory; and 

programming the Volatile configuration memory with con 
figuration data in the second bitstream if a valid pre 
amble is detected in the second bitstream. 

3. The method of claim 1, wherein a valid preamble is 
determined not detected in the first bitstream when no valid 
preamble is received from the first bitstream a certain number 
of clock cycles after the detecting is initiated. 

4. The method of claim 1 including: 
if a valid preamble is detected in the first bitstream: 

checking the first bitstream for errors as the configura 
tion data is programmed into the Volatile configura 
tion memory; and 

if an error is detected by the checking of the first bit 
stream, reading the second bitstream from the second 
memory block of the non-volatile memory. 

5. The method of claim 1, wherein the first bitstream com 
prises primary boot data and the second bitstream comprises 
default boot data for the programmable logic device. 

6. The method of claim 1, wherein if a valid preamble is not 
detected in the first bitstream: 

prior to reading of the second bitstream, reading a third 
bitstream from a third memory block of the non-volatile 
memory, wherein the third bitstream contains a jump 
command to the address of the second memory block; 

detecting whether the third bitstream contains a valid pre 
amble as the third bitstream is read from the non-volatile 
memory and before executing the jump command; and 

executing the jump command if a valid preamble is 
detected in the third bitstream. 

7. The method of claim 1, wherein the method is performed 
in response to one of a powering up of the programmable 
logic device and an instruction received by the programmable 
logic device. 



US 8,060,784 B1 
11 

8. The method of claim 1, wherein the non-volatile 
memory is an external memory device. 

9. A programmable logic device comprising: 
configuration memory adapted to store configuration data 

to configure the programmable logic device for its 
intended function; and 

a controller adapted to: 
read a first bitstream from a first memory block of non 

Volatile memory; 
detect whether the first bitstream contains a valid pre 

amble as the first bitstream is read from the non 
Volatile memory and before configuration data in the 
first bitstream is programmed into the Volatile con 
figuration memory; 

program the Volatile configuration memory with con 
figuration data in the first bitstream if a valid preamble 
is detected in the first bitstream; and 

read a second bitstream from a second memory block of 
the non-volatile memory if a valid preamble is not 
detected in the first bitstream. 

10. The programmable logic device of claim 9, wherein the 
controller is further adapted to determine that a valid pre 
amble is not detected in the first bitstream when no valid 
preamble is received from the first bitstream a certain number 
of clock cycles after the detecting is initiated. 

11. The programmable logic device of claim 9, wherein the 
controller is further adapted to: 

detect whether the second bitstream contains a valid pre 
amble as the second bitstream is read from the non 
Volatile memory and before configuration data in the 
second bitstream is programmed into the Volatile con 
figuration memory; and 

12 
program the Volatile configuration memory with configu 

ration data in the second bitstream if a valid preamble is 
detected in the second bitstream. 

12. The programmable logic device of claim 9, wherein the 
5 controller is further adapted to: 
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if a valid preamble is detected in the first bitstream, check 
the first bitstream for errors as the configuration data is 
programmed into the Volatile configuration memory; 
and 

if an error is detected by the checking of the first bitstream, 
read the second bitstream from the second memory 
block of the non-volatile memory. 

13. The programmable logic device of claim 9, wherein the 
controller is further adapted to: 

prior to reading the second bitstream, read a third bitstream 
from a third memory block of the non-volatile memory, 
wherein the third bitstream contains a jump command to 
the address of the second memory block; 

detect whether the third bitstream contains a valid pre 
amble as the third bitstream is read from the non-volatile 
memory and before executing the jump command; and 

execute the jump command if a valid preamble is detected 
in the third bitstream. 

14. The programmable logic device of claim 9, wherein the 
non-volatile memory is an external memory device. 

15. The programmable logic device of claim 9, wherein the 
controller is a bus interface controller. 


