
US007725803B1

(12) United States Patent (10) Patent No.: US 7,725,803 B1
Tang et al. (45) Date of Patent: May 25, 2010

(54) PROGRAMMABLE LOGIC DEVICE 7,036,059 B1 4/2006 Carmichael
PROGRAMMING VERIFICATION SYSTEMS 7,257,750 B1* 8/2007 Singh et al. 714f732
AND METHODS 7,647,537 B2 * 1/2010 Miyake et al. 714/725

OTHER PUBLICATIONS
(75) Inventors: Howard Tang, San Jose, CA (US);

Roger Spinti, Milpitas, CA (US); Xilinx Corporation, Virtex-5 FPGA Configuration User Guide, Jul.
San-Ta Kow, San Jose, CA (US); Ann 31, 2006, 152 pages.
Wu, San Jose, CA (US) Altera Corporation, Stratix II Device Handbook, vol. 1, Chapter 3,

Configuration & Testing, IEE Std. 1149.1 JTAG Boundary-Scan

(73) Assignee: Lattice Semiconductor Corporation, YE".E. "EgDetection & Recovery Using CRC in
Hillsboro, OR (US) Altera FPGA Devices, Application Note 357, Apr. 2006, 13 pages.

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 868 days. Primary Examiner Shelly A Chase

(74) Attorney, Agent, or Firm Haynes and Boone, LLP
(21) Appl. No.: 11/557.808

(57) ABSTRACT
22) Filed: Nov. 8, 2006
(22) File OV. S., In accordance with an embodiment of the present invention, a
(51) Int. Cl. programmable logic device includes configuration memory

H03M, 3/00 (2006.01) to store configuration data to configure the programmable
GOIR 3L/28 (2006.01) logic device, and a non-volatile memory to store configura

(52) U.S. Cl. 7147ss 714,725 tion data for transfer to the configuration memory to config ure the programmable logic device. The non-volatile memory
also stores a first code value based on the configuration data
stored in the non-volatile memory. A code block calculates a
second code value based on the configuration data transferred

(56) References Cited to the configuration memory. A comparator compares the first
code value to the second code value to verify that the con
figuration data was not corrupted during the transfer from the

(58) Field of Classification Search 714/725,
714/746, 758; 365/189.07

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,237,124 B1 5/2001 Plants non-volatile memory to the configuration memory.
6,363,019 B1* 3/2002 Erickson et al. 365, 18907
7,030,647 B1 * 4/2006 White et al. 326/38 13 Claims, 3 Drawing Sheets

-0

402

CONFIGURATION DATA
TRANSFERRED FROM NON
WOATLE TO WOLATLE

MEMORY AND PRECALCUATED
CRC VALUESSORED

404

SED OPERATION INITIATED
WTHENABLE SIGNAL FROM

USERLOGIC CRC BLOCK READS
CONFIGURATION DATA DURING
TRANSFER OR FROM YOLATE
MEMORY AND CALCUATES

CRC WALUE

406

CRC BLOCK READS 0UT
CONFIGURATION DATA FROM
WOLATILE MEMORY AND
CALCULATES CRC WALUE

408

CALCULATED CRC WALUE
COMPARED TO PREVIOUSLY

STORED CRC WALUE
410

ERROR SIGNALS ASSERTED
F THE PREVIOUSLY STORED

CRC VALUE DOES NOT MATCH
THE CALCULATED CRC WALUE

US 7,725,803 B1 Sheet 1 of 3 May 25, 2010 U.S. Patent

112(2)
10

No. No.aeae
PROGRAMN

REFRESH
INSTRUCTION

02
6

104

JTAG PORT

t
104

f02

112(1)

SEDERROR

US 7,725,803 B1 Sheet 2 of 3 May 25, 2010 U.S. Patent

U.S. Patent May 25, 2010 Sheet 3 of 3 US 7,725,803 B1

1. 400

402

CONFIGURATION DATA
TRANSFERRED FROM NON

WOLATILE TO WOLATILE
MEMORY AND PRECALCULATED

CRC WALUE IS STORED

404

SED OPERATION INITIATED
WITH ENABLE SIGNAL FROM

USER LOGIC CRC BLOCK READS
CONFIGURATION DATA DURING
TRANSFER OR FROM WOLATILE
MEMORY AND CALCULATES

CRC WALUE

406

CRC BLOCK READS OUT
CONFIGURATION DATA FROM

WOLATILE MEMORY AND
CALCULATES CRC VALUE

408

CAL CULATED CRC WALUE
COMPARED TO PREVIOUSLY

STORED CRC WALUE
410

ERROR SIGNALS ASSERTED
IF THE PREVIOUSLY STORED
CRC WALUE DOES NOT MATCH
THE CALCULATED CRC WALUE

Fig. 4

US 7,725,803 B1
1.

PROGRAMMABLE LOGIC DEVICE
PROGRAMMING VERIFICATION SYSTEMS

AND METHODS

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to programming verification tech
niques for programmable logic devices.

BACKGROUND

Programmable logic devices, such as a complex program
mable logic device (CPLD) or a field programmable gate
array (FPGA), may utilize a combination of non-volatile and
Volatile memory to deliver a single-chip solution Supporting
rapid start-up (often referred to as “instant-on' capability)
and infinite re-configurability. The non-volatile memory
(e.g., flash memory cells) within the non-volatile PLD stores
the device configuration, with the PLD configured upon
power-up by transferring the configuration data from the non
Volatile memory to the Volatile memory (e.g., configuration
SRAM cells).

During the configuration data transfer from non-volatile to
volatile memory, however, it is possible for the configuration
data to be corrupted. If the configuration data is corrupted, the
PLD may not function properly and device contention or
damage may occur to the PLD or to external devices con
trolled by the PLD.
A conventional approach uses Software to read out from the

PLD the configuration data from the volatile memory to com
pare to the intended bit pattern to confirm that the program
ming was successful. This approach is time consuming and
costly, for example, in terms of the Software and on-board
microprocessor that may be required to perform the verifica
tion. As a result, there is a need for improved programming
verification techniques for non-volatile PLDs.

SUMMARY

In accordance with one embodiment of the present inven
tion, a programmable logic device includes configuration
memory adapted to store configuration data to configure the
programmable logic device; a non-volatile memory adapted
to store configuration data for transfer to the configuration
memory to configure the programmable logic device,
wherein the non-volatile memory is further adapted to store a
first code value based on the configuration data stored in the
non-volatile memory; a code block adapted to calculate a
second code value based on the configuration data transferred
to the configuration memory; and a comparator adapted to
compare the first code value to the second code value to verify
that the configuration data was not corrupted during the trans
fer from the non-volatile memory to the configuration
memory.

In accordance with another embodiment of the present
invention, a programmable logic device includes configura
tion memory adapted to store configuration data to configure
the programmable logic device; a non-volatile memory
adapted to store configuration data for transfer to the configu
ration memory to configure the programmable logic device;
and means for Verifying the configuration data transferred
from the non-volatile memory to the configuration memory is
not corrupted.

In accordance with another embodiment of the present
invention, a method of verifying a programming operation of
a programmable logic device includes transferring configu

10

15

25

30

35

40

45

50

55

60

65

2
ration data from non-volatile memory within the program
mable logic device to configuration memory to configure the
programmable logic device; generating a code value based on
the configuration data transferred from the non-volatile
memory to the configuration memory; and comparing the
generated code value to a pre-calculated code value to deter
mine if the transferred configuration data stored in the con
figuration memory is corrupted.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more com
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an example of a
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 2 shows a block diagram illustrating an example of a
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 3 shows a block diagram illustrating an example of a
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 4 shows a flowchart for program verification of the
programmable logic device of FIG. 1, 2, or 3 in accordance
with an embodiment of the present invention.

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

FIG. 1 shows a block diagram illustrating an example of a
programmable logic device (PLD) 100 in accordance with an
embodiment of the present invention. PLD 100 generally
includes input/output (I/O) blocks 102, programmable logic
blocks 104, and an interconnect 116. I/O blocks 102 provide
I/O functionality (e.g., Supports one or more I/O and/or
memory interface standards) for PLD 100. Programmable
logic blocks 104 (e.g., also referred to in the art as config
urable logic blocks or logic array blocks) provide logic func
tionality for PLD 100, such as LUT-based logic typically
associated with FPGAS or array-based logic typically associ
ated with CPLDs. Interconnect 116 would typically be dis
tributed throughout PLD 100 to provide programmable rout
ing resources.
PLD 100 also includes reprogrammable non-volatile

memory 106 (e.g., blocks of EEPROM or flash memory) and
configuration memory 114 (e.g., SRAM cells or other volatile
or non-volatile memory) and may further include volatile
memory 108 (e.g., block SRAM), clock-related circuitry 110
(e.g., PLL circuits), and/or one or more data ports 112. Non
volatile memory 106, for example in accordance with an
embodiment of the present invention, may be used to store
configuration data within PLD 100 for transfer to configura
tion memory 114 of PLD 100 upon power up or during
reconfiguration of PLD 100. This may drastically reduce the
time to reconfigure PLD 100 relative to an external bitstream
(e.g., reduce the time from seconds to microseconds for load
ing of configuration data into configuration memory 114).

US 7,725,803 B1
3

Data port 112 may be used for programming PLD 100, as
would be understood by one skilled in the art. For example,
data port 112(1) may represent a programming port Such as a
central processing unit (CPU) port (also referred to as a
peripheral data port, a microprocessor interface, or a
sysCONFIG programming port) and/or a serial peripheral
interface (SPI) port. Data port 112(2) may represent, for
example, a programming port Such as a joint test action group
(JTAG) port by employing standards such as Institute of
Electrical and Electronics Engineers (IEEE) 1149.1 or 1532
standards.

Data ports 112(1) and 112(2) are not both required, but one
or the other or both may be included to receive configuration
data and commands, depending upon the desired application
and requirements as would be understood by one skilled in the
art. Further details regarding programming examples via data
ports may be found in U.S. Pat. Nos. 6,828,823 and 7,081,
771.

It should be understood that the number and placement of
the various elements (some of which may be optional). Such
as I/O blocks 102, logic blocks 104, non-volatile memory
106, volatile memory 108, clock-related circuitry 110, data
port 112, configuration memory 114, and interconnect 116 is
not limiting and may depend upon the desired application.
Furthermore, it should be understood that the elements are
illustrated in block form for clarity and that certain elements,
Such as configuration memory 114 and interconnect 116
would typically be distributed throughout PLD 100 (e.g., in
and between logic blocks 104) to perform their conventional
functions (e.g., storing configuration data that configures
PLD 100 and providing programmable routing resources,
respectively).
As noted herein, non-volatile memory 106 may be used to

store configuration data within PLD 100 for transfer to con
figuration memory 114 of PLD 100 upon power up or during
reconfiguration of PLD 100. After the configuration data is
transferred from non-volatile memory 106 to configuration
memory 114, PLD 100 wakes up and enters a user mode of
operation based on the configuration data. To verify that the
configuration data within configuration memory 114 has not
been corrupted during the data transfer from non-volatile
memory 106, a self-error detection (SED) operation is per
formed in accordance with one or more embodiments of the
present invention.
The SED operation (also referred to herein as a one-shot

SED for some embodiments) may allow PLD 100 to still
provide the “instant-on' start-up capability if the SED opera
tion is performed, for example, after PLD 100 wakes up and
enters the user mode. If the SED operation detects an error in
the configuration data stored in configuration memory 114, an
error signal may be provided and/or other operations may be
initiated (e.g., a reconfiguration may be performed by reload
ing the configuration data into configuration memory 114).

For example, FIG. 2 shows a block diagram illustrating an
example of a PLD 200 in accordance with an embodiment of
the present invention. PLD 200 may represent, for example,
an exemplary implementation of certain portions of PLD 100
(FIG. 1). PLD 200 includes non-volatile memory 106 and
configuration memory 114 (volatile memory), with an arrow
226 indicating that configuration data stored in non-volatile
memory 106 may be transferred to configuration memory 114
to configure user logic 216 within PLD 200 (as indicated by
an arrow 212).

User logic 216 may represent, for example, I/O blocks 102,
programmable logic blocks 104, and/or interconnect 116
(discussed in reference to FIG. 1). An arrow 214 illustrates

10

15

25

30

35

40

45

50

55

60

65

4
that data (user I/O data) may be transferred to and from PLD
200 via user logic 216, such as via I/O blocks 102.
The transfer of configuration data from non-volatile

memory 106 to configuration memory 114 may be initiated
by various techniques, one or more of which may be option
ally implemented depending upon the desired application.
For example, data port 112 (e.g., a JTAG port) may be imple
mented to provide a command (e.g., a Refresh instruction) via
a JTAG engine 222, a program pin 218 (labeled PRO
GRAMN) may be implemented to provide a control signal
(e.g., a pulse or pin toggled), and/or a power on reset (POR)
220 may be implemented to provide a reset signal to com
mand the transfer of the configuration data.

In accordance with an embodiment of the present inven
tion, the configuration data programmed into non-volatile
memory 106 includes a first code value Such as a pre-calcu
lated cyclic redundancy code (CRC) value (e.g., a 32-bit CRC
value, also referred to as a CRC checksum) for the configu
ration data. For example when the configuration data is trans
ferred from non-volatile memory 106 to configuration
memory 114, the pre-calculated CRC value is stored in a
register 202 (e.g., a 32-bit SED CRC register to store the
32-bit value), as illustrated by an arrow 228. A code block
such as a CRC block 206 (e.g., including a CRC calculation
engine for performing the SED operation) calculates a second
code value Such as a CRC value based on the configuration
data stored in configuration memory 114. A comparator 204
(e.g., which may be any suitable structure separate from or
within register 202, CRC block 206, or other elements of PLD
200 or suitable software implementation) then compares this
calculated CRC value with the CRC value stored in register
202. If there is a difference between the two CRC values, an
error signal 224 (labeled SED ERROR) may be provided
with a logical value (e.g., a logical high value) to indicate that
the configuration data transferred to configuration memory
114 is corrupted.

For example, the SED operation may be performed auto
matically when the configuration data is transferred from
non-volatile memory 106 to configuration memory 114.
Alternatively, the SED operation may be enabled via an
enable signal 210 provided, for example, by user logic 216
(e.g., user logic 216 provides a logical high enable signal 210
to CRC block 206). The SED operation, for example, may be
performed only once (one-time self check) when PLD 200
enters the user mode after the transfer of the configuration
data from non-volatile memory 106 to configuration memory
114. Alternatively, the SED operation may be performed peri
odically during the user mode of operation to check for con
figuration data corruption due to single-event upsets or other
configuration data value disturbances.
As a specific implementation example in accordance with

an embodiment of the present invention, CRC block 206 may
include a CRC calculation engine that provides one or more
control signals 230 to configuration memory 114 (e.g., to the
associated data shift register as would be understood by one
skilled in the art) to clockout the configuration data (e.g., each
SRAM bit). The configuration data read from configuration
memory 114 is provided to CRC block 206 (e.g., as illustrated
by an arrow 208), which for example is passed sequentially
through a 32-bit CRC accumulation register.
Once the configuration data (e.g., the whole array of

SRAM bits) from configuration memory 114 is accumulated,
the accumulated CRC value (i.e., the calculated CRC value) is
compared (e.g., by comparator 204) to the pre-calculated
CRC value stored in register 202. If the two CRC values do
not match, error signal 224 (i.e., an error flag) is set to a certain
logical value to indicate an SED error condition and that a

US 7,725,803 B1
5

configuration data transfer error occurred. If the two CRC
values match, error signal 224 is not set (i.e., no error condi
tion is flagged), which indicates that the configuration data
transfer from non-volatile memory 106 to configuration
memory 114 was successful.
As another example, FIG. 3 shows a block diagram illus

trating an example of a PLD 300 in accordance with an
embodiment of the present invention. PLD 300 may repre
sent, for example, an exemplary implementation of certain
portions of PLD 100 (FIG. 1) and is similar to PLD 200 (FIG.
2) and therefore the description of common elements will not
be repeated.
PLD 300 represents an implementation example for the

SED operation, with the SED operation performed automati
cally during the transfer of the configuration data from non
volatile memory 106 to configuration memory 114 (indicated
by arrow 226). The transfer of configuration data may be
initiated, as discussed in reference to FIG. 2, for example by
JTAG command, POR control signal, or PROGRAMN con
trol signal.
An arrow 302 indicates that CRC block 206 may be pro

vided with the configuration data during the transfer of the
configuration data to configuration memory 114, with CRC
block 206 calculating the second code value (e.g., calculated
CRC value) during the transfer. Alternatively, the configura
tion data may be read from configuration memory 114, as
discussed in reference to FIG. 2, and provided to CRC block
206 to calculate the second code value.
A control signal 304 (e.g., labeled DONE) may be pro

vided by a program engine (e.g., a conventional circuit block
for controlling the transfer of configuration data from non
volatile memory 106 to configuration memory 114) or from
CRC block 206 to indicate to comparator 204 when the trans
fer is complete or the second code value has been calculated,
respectively. Comparator 204 compares the first code value
stored in register 202 with the second code value calculated
by CRC block 206 and indicates via error signal 224 if the first
code value and the second code value do not match.
A control signal 306 (e.g., labeled Activate) may be pro

vided by comparator 204 to control whether user logic 216
enters a user mode of operation (e.g., PLD 300 wakes up)
based on the configuration data stored in configuration
memory 114. For example, error signal 224 and control signal
306 may be combined into one control signal, with a first
logic value (e.g., a logic high) indicating that the first and
second code values match and user mode of operation may
begin, while a second logic value (e.g., a logic low) indicating
that the first and second code values do not match and the user
mode of operation should not begin. For example, if the
configuration data is determined to be corrupted, the configu
ration data transfer from non-volatile memory 106 to configu
ration memory 114 should be repeated or the configuration
data within non-volatile memory 106 should be repro
grammed.
The SED operation of PLD300 may provide certain advan

tages. For example, if the configuration data loaded into con
figuration memory 114 is corrupted, it may be advantageous
to prevent PLD 300 from entering a user mode of operation to
avoid unpredictable behavior due to the corrupted configura
tion data.

FIG. 4 shows a flowchart 400 as a program verification
example for PLD 100, 200, or 300 (FIGS. 1, 2, and 3, respec
tively) in accordance with an embodiment of the present
invention. Flowchart 400 begins with a transfer of configura
tion data from non-volatile to volatile memory, with the pre
calculated CRC value from the non-volatile memory stored in
a register (block 402). Alternatively, the pre-calculated CRC

10

15

25

30

35

40

45

50

55

60

65

6
value may remain in the non-volatile memory as long as its
accessible for the comparison to the calculated CRC value.
Once the PLD is configured and enters a user mode of

operation, the user logic may initiate the SED operation
(block 404). As an example, the SED operation option may be
off by default. Therefore, a user would enable the SED opera
tion option by setting the appropriate bit of the configuration
data to appropriately configure the user logic to initiate the
SED operation, if desired.

If the SED operation is enabled, the CRC block reads out
the configuration data from the Volatile memory and calcu
lates a CRC value based on the configuration data (block
406). The configuration data stored in the configuration
memory (e.g., SRAM configuration fuses) may be read back
by the CRC block, while the PLD remains in user mode, using
hardwired readback circuitry, as would be understood by one
skilled in the art. Thus, the CRC block may utilize read back
circuitry that may already be available on Some conventional
PLDs. The calculated CRC value is then compared to the
previously stored (pre-calculated) CRC value (block 408) and
an SED erroris indicated if the two CRC values do not match
(block 410).
As shown in FIG. 4 as an alternative, the CRC block may

receive the configuration data during the transfer or read the
configuration data from the configuration memory and cal
culate the CRC value (block 412). Block 412 bypasses block
404 and 406 and may be performed automatically prior to the
PLD entering a user mode of operation (e.g., as discussed in
reference to FIG. 3). Therefore, after the comparison is made
between code values (block 408), a user mode of operation
may begin if the stored CRC value and the calculated CRC
value match (block 410).

Systems and methods are disclosed herein to provide pro
gramming verification techniques in accordance with one or
more embodiments of the present invention. In general, con
ventional non-volatile PLDs typically utilize only non-vola
tile memory, with the configuration data stored in the non
Volatile memory verified during programming (e.g., by
reading out the configuration data from the PLD). As there is
no configuration data transfer from non-volatile to volatile
memory within the PLD, there is no risk of configuration data
transfer corruption. For conventional volatile PLDs, an exter
nal boot memory device (often referred to as a boot PROM)
stores the configuration data and transfers the configuration
data into the PLD upon PLD power up or reconfiguration. A
CRC check is typically performed on the configuration data
as the PLD is reading the configuration data from the external
memory, but this process (e.g., configuration and CRC check)
is slow relative to the configuration time from embedded
non-volatile to volatile memory.

In accordance with an embodiment of the present inven
tion, an automatic programming verification of a PLD, with
both non-volatile and volatile memory, is disclosed. The pro
gramming verification confirms whether the configuration
data transfer from the non-volatile memory to the volatile
memory was performed correctly and with no configuration
data corruption.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. For example, although
a CRC error detection routine is discussed herein, other types
of error detection routines may be substituted for the CRC
error detection routine in accordance with one or more
embodiments of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.

US 7,725,803 B1
7

What is claimed is:
1. A programmable logic device comprising:
configuration memory adapted to store configuration data

to configure the programmable logic device;
a non-volatile memory adapted to store configuration data

for transfer to the configuration memory to configure the
programmable logic device, wherein the non-volatile
memory is further adapted to store a first code value
based on the configuration data stored in the non-volatile
memory;

a register adapted to store the first code value received from
the non-volatile memory;

a code block adapted to calculate a second code value
based on the configuration data transferred to the con
figuration memory; and

a comparator adapted to compare the first code value stored
in the register to the second code value to verify that the
configuration data was not corrupted during the transfer
from the non-volatile memory to the configuration
memory.

2. The programmable logic device of claim 1, wherein the
code block comprises a cyclic redundancy code engine, the
first code value comprises a pre-calculated cyclic redundancy
code checksum, and the second code value comprises a cyclic
redundancy code checksum.

3. The programmable logic device of claim 1, wherein the
register is adapted to store the first code value received from
the non-volatile memory during the transfer of the configu
ration data from the non-volatile memory to the configuration
memory.

4. The programmable logic device of claim 1, further com
prising a plurality of programmable logic blocks adapted to
be configured by the configuration data stored in the configu
ration memory, wherein one of the programmable logic
blocks provides an enable signal to the code block, based on
one or more bits of the configuration data set by a user, to
initiate the calculation of the second code value and the com
parison of the first and second code values to verify that the
configuration data was not corrupted during the transfer from
the non-volatile memory to the configuration memory.

5. The programmable logic device of claim 1, wherein the
comparator provides an error signal having a first logic value
if the first code value does not equal the second code value,
and wherein the code block provides one or more control
signals to the configuration memory to read out the configu
ration data stored in the configuration memory.

6. A programmable logic device comprising:
configuration memory adapted to store configuration data

to configure the programmable logic device;
a non-volatile memory adapted to store configuration data

for transfer to the configuration memory to configure the
programmable logic device, wherein the non-volatile
memory is further adapted to store a first code value
based on the configuration data stored in the non-volatile
memory;

a code block adapted to calculate a second code value
based on the configuration data transferred to the con
figuration memory; and

a comparator adapted to compare the first code value to the
second code value to Verify that the configuration data
was not corrupted during the transfer from the non
Volatile memory to the configuration memory,

wherein the calculation of the second code value and the
comparison of the first and second code values are per
formed prior to the programmable logic device entering
a user mode of operation.

10

15

25

30

35

40

45

50

55

60

65

8
7. A programmable logic device comprising:
configuration memory adapted to store configuration data

to configure the programmable logic device;
a non-volatile memory adapted to store configuration data

for transfer to the configuration memory to configure the
programmable logic device, wherein the non-volatile
memory is further adapted to store a first code value
based on the configuration data stored in the non-volatile
memory;

a code block adapted to calculate a second code value
based on the configuration data transferred to the con
figuration memory; and

a comparator adapted to compare the first code value to the
second code value to Verify that the configuration data
was not corrupted during the transfer from the non
Volatile memory to the configuration memory,

wherein the calculation of the second code value and the
comparison of the first and second code values, to verify
that the configuration data was not corrupted during the
transfer from the non-volatile memory to the configura
tion memory, are performed automatically after the pro
grammable logic device enters a user mode of operation.

8. A programmable logic device comprising:
configuration memory adapted to store configuration data

to configure the programmable logic device;
a non-volatile memory adapted to store configuration data

for transfer to the configuration memory to configure the
programmable logic device, wherein the non-volatile
memory is further adapted to store a first code value
based on the configuration data stored in the non-volatile
memory;

a code block adapted to calculate a second code value
based on the configuration data transferred to the con
figuration memory;

a comparator adapted to compare the first code value to the
second code value to Verify that the configuration data
was not corrupted during the transfer from the non
Volatile memory to the configuration memory;

a plurality of programmable logic blocks;
a volatile memory block adapted to store information dur

ing operation of the programmable logic device;
input/output blocks adapted to transfer information into

and out of the programmable logic device; and
an interconnect configured based on the configuration data

stored in the configuration memory and adapted to pro
vide routing resources between the volatile memory
block, the input/output blocks, and the programmable
logic blocks.

9. A method of Verifying a programming operation of a
programmable logic device, the method comprising:

transferring configuration data from non-volatile memory
within the programmable logic device to configuration
memory to configure the programmable logic device;

transferring a pre-calculated code value from the non-vola
tile memory, wherein the pre-calculated code is based on
the configuration data stored in the non-volatile
memory;

generating a code value based on the configuration data
transferred from the non-volatile memory to the con
figuration memory; and

comparing the generated code value to the transferred pre
calculated code value to determine if the transferred
configuration data stored in the configuration memory is
corrupted.

US 7,725,803 B1

10. The method of claim 9, further comprising:
providing an enable signal from user logic, configured

based on the transferred configuration data stored in the
configuration memory, to initiate the comparing;

reading the configuration data stored in the configuration
memory to provide for the generating; and

providing an error signal if the transferred configuration
data is corrupted.

11. The method of claim 9, wherein the pre-calculated code
value is transferred from the non-volatile memory to a regis
ter.

12. The method of claim 9, wherein the generated code
value and the pre-calculated code value are cyclic redundancy
code checksums, and wherein the generated code value is
generated by a cyclic redundancy code calculation engine.

13. A method of Verifying a programming operation of a
programmable logic device, the method comprising:

10

15

10
transferring configuration data from non-volatile memory

within the programmable logic device to configuration
memory to configure the programmable logic device;

reading the configuration data during the transferring;
generating a code value based on the configuration data

transferred from the non-volatile memory to the con
figuration memory;

comparing the generated code value to a pre-calculated
code value to determine if the transferred configuration
data stored in the configuration memory is corrupted,
wherein the comparing is performed prior to the pro
grammable logic device entering a user mode of opera
tion; and

providing at least one error signal that indicates whether
the configuration data is corrupted.

k k k k k

