US007675313B1

a2 United States Patent 10) Patent No.: US 7,675,313 B1
Tang et al. 45) Date of Patent: Mar. 9, 2010
(54) METHODS AND SYSTEMS FOR STORING A 6,212,639 B1* 4/2001 Erickson et al.c.c...... 726/26
SECURITY KEY USING PROGRAMMABLE 6,654,889 B1* 11/2003 Trimberger 713/191
FUSES 6,876,594 B2* 4/2005 Griesmeretal. 365/225.7
6,944,083 B2* 9/2005 Pedlow, Jr. 365/225.7
75 . . 7,284,134 B2* 10/2007 Fujiwaraetal. 713/189
(75) " Inventors: gli’::lars‘lg?gsge Scagj(%sg)cs‘zﬁﬁ);:w 7,339,400 BL* 3/2008 Walstrum etal. 326/41
’ ’ ’ ’ 2002/0199110 ALl™* 12/2002 Keancccccceeevereunnne 713/189
San Jose, CA (US)
OTHER PUBLICATIONS
(73) Assignee: L?ttice Semiconductor Corporation, Altera®, Chapter 7, Configuring Stratis II Devices, Jul. 2004, pp.
Hillsboro, OR (US) 7-1-7-94.
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Primary Examiner—James H. Cho
U.S.C. 154(b) by 267 days. Assistant Examiner—Christopher Lo
(74) Attorney, Agent, or Firm—Haynes and Boone, LL.P
(21) Appl. No.: 11/498,645
. 57 ABSTRACT
(22) Filed: Aug. 3, 2006
Systems and methods are disclosed herein to provide
(51) Int.ClL improved security key techniques for programmable logic
HO3K 19/00 (2006.01) devices. For example, in accordance with an embodiment of
(52) US.CLl oo, 326/8; 716/16; 713/189; the present invention, a method of providing data security for
713/193; 326/38 aprogrammable logic device (PLD) includes programming a
(58) Field of Classification Search 326/8-9, plurality of programmable fuses that stores a security key
326/37-47; 713/189-193, 1, 135, 180; 716/16; comprising a plurality of data bit values, wherein each data bit
711/100, 102, 152, 153, 216 value is associated with a respective subset of at least three of
See application file for complete search history. the fuses. The security key is retrieved from the fuses using
the data bit values stored by each subset of the fuses. An
(56) References Cited encrypted configuration data bitstream is decrypted using the
U.S. PATENT DOCUMENTS re?trleved security key to obtain an original configuration data
bitstream to configure the PLD.
5,838,167 A * 11/1998 Ericksonet al. 326/38
6,118,869 A * 9/2000 Kelemetal. ...ccccvvvee.n.. 380/44 13 Claims, 6 Drawing Sheets
110-\\ %\05
................................. C.-...)..........................., VPP: SUPEH
VPP RALLS VOLTAGE FOR
220(n) 230(n) 290 PROGRAMMING
H | \
: 220(1) 230(1)
TOACTIVATE ! P Ty N s05
THEAES l210(1) A]
DECRYPTION - YA 210m) PENABLE.
ENGINE . o <o ! COMMAND
T i FROMJTAG
- H PORT
SECURITY I DECODER
KEY
115 24001
140 : : :
anm\ E;POF 260 [128-BIT KEY SHIFT REGISTER |- 250 DATA OUT
; i TOTDOOF
JTAG PORT | HASH CIRCUIT | -255 | JTAG PORT
\-257 :
D ™~ 235 '
245 DATA CLOCK FROM TCK OF SERIAL ENCRYPTION | DISABLE READ OUT OF
(80, 81) JTAG PORT OR FROM THE KEY FOR THE AES ENGRYPTION KEY
REGISTER SELECTION FROM AES DECRYPTION ENGINE DECRYPTION ENGINE AFTER KEYLOCK FUSE
PROGRAMMING AND READ 1S PROGRAMMED.

COMMAND OF THE JTAG PORT

US 7,675,313 B1

Sheet 1 of 6

Mar. 9, 2010

U.S. Patent

} "OIld
S8~ -
TN HINNVES0Nd [103HIQ DYL
001010040400 | N oL
10011000100 08l "}"0H0 ol
WVHS (
mmﬁ\ 103138 /4| - Z 091
T % S |4{ 4300030 X\]
S93HdNO930 [*77] Nowdawoaa [@u < wod
& ~52l XA | /
- /
MY B nosids 05
MOVEQva F18vSIa Y
103738
| Cpa—ss ovir
AIH OVLr
> HIWINYHOOHd |\N
ALIHNO3S e 4(&/: <
RS \
0zl o) X2/ 1, ONINWYEOOHd A OVLr
ovLr IN"0I940
A Q1d INLVYTIOA Gy
001 0v4-]
HOSS300Ud

S0L-1 yNy3LX3

US 7,675,313 B1

Sheet 2 of 6

Mar. 9, 2010

U.S. Patent

¢ Olid 14O DVLF 3HL 40 ANVIWINOD
‘QINNYHO0Hd SI av3d ANY DNINWYHOO0Hd
3SNAMO0TAIM HaLdy | 3INIONI NOILAHO3A 3NIONI NOILJAHO3d S3V WOY4 NOILDT T3S HILSIDY
A3M NOILJAHONT S3V IHL HO4 A 3H1 WOH4 HO 1HOd 9vir (1S 09)
40 1NOQv3d 31avsia | NOILJAHONT TvIH3S 40 ¥JL WOH4 %2019 V1va ove
// 4 AN e
A= —
w / 152~ v m
1H40d OYIP i N ~—7 X m
3000101 | - 5521 LINOHID HSYH |) N w jodBr
tnoviyd : |10 052 ~{H3LSID3H LAIHS A LIg-62! | 1o 9% 1 " NIviLva
o | LL by Iy oL ™ : T-0pl
PN 082 —— | Oove~ — S Loy
i | | (Worz~ly3goo3a _|_ L 430093a L L i ALIMNO3S
140d i = | H m
ovir s_wE : el L m _
ANVNINOD ol | s ol : ¢ :

EX:L L E I - woz oY it o 5.2 i 3NION3
WVHOOHd | A LN | NOILdAHO3A
G6e " " S— N\ (Hoke : SV IHL

; _ / / Y \ i JLYAILOVY OL
512 m I (Hoez (1)oee
ONINWYHOOHd 062 (Uoez (u)oze m
3sN4 m l m
ANIS T\ feeesreeemeeesseeeseeiooeeiieeieeeeseeameeeseeeeseessseeessssesseseesessssesssesessssssscessnseessssessssensesensessseeas ;
L) .~
o0z oLl

U.S. Patent

KEY INPUT FOR
PROGRAMMING |

CAPTURE FOR
FUSE PATTERN
VERIFY

Mar. 9, 2010 Sheet 3 of 6 US 7,675,313 Bl
310
/
READ SECURITY KEY INTO SHIFT REGISTER FROM EXTERNAL DEVICE
320
Y Vd
PERFORM HASHING OPERATION ON SECURITY KEY
330
Y /
PROGRAM FUSES WITH HASHED SECURITY KEY
340
i /
READ STORED DATA VALUES FROM FUSES INTO SHIFT REGISTER
350
\J d
VERIFY DATA VALUES OF FUSES
FIG. 3
250
> ~
128-BIT KEY SHIFT REGISTER EHQEUT FOR
PATTERN
205 VERIFICATION \ PROCESS
vy % OF FIG. 3
X X @ FIRST
HASHING J

READ DATA
VALUES
FROM

DECODERS

(410)

PROVIDE
DOUBLE
HASHED KEY
TO THE AES
DECRYPTION
ENGINE. (430)

SECOND
HASHING
(420)
DECRYPTION
% ENGINE
125

FIG. 4

US 7,675,313 B1

Sheet 4 of 6

Mar. 9, 2010

U.S. Patent

VvS "Old
1INS34 94O 3HL SATOH VHS JHL OLNI GINWYHDOHd
H31SID3Y TIV4/SSVd 118 INO FHL SIWY3HLSL19 TYNIDIHO JHL
< 7/
vl
A 0Ll w_‘ood vlva \
MOL —— - 073 WVHS 1~ 061
SNL — NPH\ | 431S1934 TIV4/SSVd 118 | [e— "914NOD
- | 08t
- | < SHIHLO 1L
oaL omm\F 08 OHO| WSa [N0€S
- 565
s 095
Wv34LsLig — Tas]
WY3HLS1Ig
Q3LdAHON3 -3 > 431S193H V1VQ 1ig-82} > Wv3u1s1ig
aL = S IVNIDIHO 378YN3
WA T N4 031031303000 gNvIEd NOHLAEONS
016 065 0.5 S3v
H3LSIDIH L4IHS 3sn4
ONIHSYH dN¢ /S3SN4 410 X201 >m_vf_
Gc7 AN HIHAIOIASIV Ligset . N
_/ 052/502
o0l N Gil

US 7,675,313 B1

Sheet 5 of 6

Mar. 9, 2010

U.S. Patent

gs "old

ﬁ 17NS3Y D49 IHL STTOH

H31S1934 1V4/SSvd 118 INO 3HL

)

ﬁ WVHS 3HL OLNI GINNYHOOHd Q

SI WV3H1S118 TYNIOIHO JHL
/

GG1/0G1 NN
—
N100 ——» SX001D YLYa \
Vd
‘30IA3A LX3N
3HL 0L 1Nd1NO < 0=—Hh 039 a'is WHS L g
SIWV3LLSLIA IHL ~ 1000 | A} |- H3LSID3Y IY4/SSYd Lig | [e— 'DI4NOD
g8 N x| I
- ' = | 081 r_ _b
T S e SHIHLO L
1. 0] Hsa ~-0€S
/ ANVIWNOD SSVdAS G6S
6/S > 09
=0
| INION3
Wv3d1sLig N Wv3H1S1lg
> 43151934 V1va Lig-62} |
Q3LdAHON3 2 WNIDIHO 085 aYNa
0cs O 031031303000 T1awvatd \NOHLdAHONS
S3v
H3LSIDIY 14IHS 354
ONIHSVH ANZ /S3SN4 d10 ¥001 A
: /
65 A Exn___omo SIV LR (oo g)z
\

US 7,675,313 B1

Sheet 6 of 6

Mar. 9, 2010

U.S. Patent

9 "OId
! A HSV14 IdS
i A
¢do3 I 403
INOd LINI aNOd LINI | V0S)

00\ * e 109 -

Id Amom_ 1nod NS) >

A |l 85H - 2 om S -

(i o)
6247 ' 80€9 @/\\%:
Y ‘ 1940 (1940

aNoa LN 0940 WoHd 0949 WOHd [*—1—V0E9

v [Fjloat aL) @ % - aL
MOL SIL VOpL TN HOL SIL
’ \ ,
Ndd q071 N N S
)) - 0uL
800} V0Ol
WYH90Hd - ovLr
/
029

US 7,675,313 Bl

1

METHODS AND SYSTEMS FOR STORING A
SECURITY KEY USING PROGRAMMABLE
FUSES

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to the security of programmable logic
devices.

BACKGROUND

Programmable logic devices (PLDs), such as field pro-
grammable gate arrays (FPGAs) or complex programmable
logic devices (CPLDs), may be programmed with configura-
tion data to provide various user-defined features. For
example, configuration data may be loaded from an external
non-volatile memory, such as a flash memory, into volatile
configuration memory of the PLD.

The particular configuration data bitstream loaded into the
PLD may be proprietary in nature, and as a result, it is desir-
able for developers to maintain its secrecy. Because many
conventional non-volatile memories permit configuration
data bitstreams to be read by external devices, developers
may choose to encrypt configuration data bitstreams before
they are stored in external non-volatile memory and loaded
into the PLD.

Configuration data is often encrypted and decrypted
through the use of conventional security keys. For example, a
configuration data bitstream may be encrypted using a par-
ticular security key and then stored in an external non-volatile
memory in encrypted form. The encrypted configuration data
bitstream may be loaded into the PLD from the external
non-volatile memory and decrypted by the PLD using the
appropriate security key stored onboard the PLD. The
decrypted configuration data may then be loaded into volatile
configuration memory of the PLD. In such applications, the
security of the configuration data largely depends on main-
taining the secrecy of the security key and the manner in
which the security key is stored onboard the PLD.

However, existing approaches to onboard security key stor-
age in PLDs is generally problematic. For example, in certain
implementations, the security key may be stored in volatile
SRAM cells onboard the PLD which are maintained by a
battery. Nevertheless, the security key will be lost if there is a
disruption in the power supplied to the SRAM cells as a result
of, for example, a battery failure.

In other implementations, the security key may be stored in
non-volatile memory onboard the PLD. Unfortunately, if
such non-volatile memory exhibits a manufacturing defect,
individual data bit values of the security key may be incor-
rectly stored. As a result, an erroneous security key may be
used by the PLD, thereby preventing the PL.D from properly
decrypting incoming configuration data bitstreams.

Accordingly, there is a need for an improved approach to
maintaining the secrecy of security keys stored in non-vola-
tile memory. In addition, there is a need for an improved
approach to the programming of security keys that reduces
the likelihood of incorrect data bit values of the security key
being stored in non-volatile memory.

SUMMARY

In accordance with one embodiment of the present inven-
tion, a method of providing data security for a programmable
logic device (PLD) includes providing a plurality of program-
mable fuses that stores a security key comprising a plurality

20

25

30

35

40

45

50

55

60

65

2

of data bit values, wherein each data bit value is associated
with a respective subset of at least three of the fuses; retriev-
ing the security key from the fuses using the data bit values
stored by each subset of the fuses; and decrypting an
encrypted configuration data bitstream using the retrieved
security key to obtain an original configuration data bitstream
to configure the PLD.

In accordance with another embodiment of the present
invention, a programmable logic device (PLD) includes vola-
tile configuration memory adapted to be programmed with
configuration data to determine user-defined features of the
PLD; a plurality of programmable fuses; a circuit adapted to
program the fuses with a security key comprising a plurality
of data bit values, wherein each data bit value is associated
with a respective subset of at least three of the fuses; a plu-
rality of decoders adapted to retrieve the security key from the
fuses using the data bit values stored by each subset of the
fuses, wherein each decoder is associated with one of the
subsets of the fuses; and a decryption engine adapted to
decrypt an encrypted configuration data bitstream using the
retrieved security key.

In accordance with another embodiment of the present
invention, a system includes a first programmable logic
device (PLD) comprising: volatile configuration memory
adapted to be programmed with configuration data to deter-
mine user-defined features of the first PL.D; a first plurality of
programmable fuses that stores a first security key comprising
aplurality of data bit values, wherein each data bit value of the
first security key is associated with a respective subset of at
least three of the first fuses; means for programming the first
fuses with the first security key; means for retrieving the first
security key from the first fuses using the data bit values
stored by each subset of the first fuses; and means for decrypt-
ing a first encrypted configuration data bitstream using the
retrieved first security key to obtain a first original configu-
ration data bitstream adapted to be programmed into the
volatile configuration memory of the first PLD.

The scope of the invention is defined by the claims, which
are incorporated into this section by reference. A more com-
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real-
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi-
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a programmable logic
device (PLD) in accordance with an embodiment of the
present invention.

FIG. 2 illustrates a block diagram of circuitry for program-
ming a security key in accordance with an embodiment of the
present invention.

FIG. 3 illustrates a process of programming a security key
in accordance with an embodiment of the present invention.

FIG. 4 illustrates additional processing performed on a
security key in accordance with an embodiment of the present
invention.

FIGS. 5A-B illustrate various components used for pro-
cessing configuration data bitstreams in accordance with
embodiments of the present invention.

FIG. 6 illustrates a block diagram of a plurality of PL.Ds
configured to decrypt configuration data bitstreams using
separate security keys in accordance with an embodiment of
the present invention.

US 7,675,313 Bl

3

Embodiments ofthe present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

The various techniques disclosed herein are applicable to a
wide variety of integrated circuits and applications. As an
exemplary implementation, a programmable logic device
having one-time-programmable (OTP) fuses will be utilized
to illustrate the techniques in accordance with one or more
embodiments of the present invention. However, it should be
understood that this is not limiting and that the techniques
disclosed herein may be implemented as desired, in accor-
dance with one or more embodiments of the present inven-
tion, within various types of integrated circuits and fuses.
Therefore, the techniques may be applied to integrated cir-
cuits other than PLDs and fuses other than OTP fuses, such as
fuses implemented in flash or other non-volatile memory.

FIG. 1 illustrates a block diagram of a programmable logic
device (PLD) 100 in accordance with an embodiment of the
present invention. PLD 100 includes configuration memory
190 which may be implemented, for example, using volatile
SRAM cells. Configuration memory 190 controls the opera-
tion of user logic 195 (e.g., LUT-based logic) which may
implement various user-defined features of PL.D 100 based on
configuration data programmed into configuration memory
190 by an SRAM programmer 185.

PLD 100 may receive configuration data bitstreams from
an external non-volatile memory (not shown in FIG. 1) or
other device connected with PLD 100 through a JTAG port
140, a serial port 150, or a parallel port 155. It will be appre-
ciated that JTAG port 140 may be implemented as a joint test
action group (JTAG) employing standards such as Institute of
Electrical and Electronics Engineers (IEEE) 1149.1 or 1532
standards. PLD 100 may also include dedicated JTAG cir-
cuitry 170 to support the operation of JTAG port 140. Serial
port 150 may be implemented as a Serial Peripheral Interface
(SPI) port 124 in accordance with a serial bus standard estab-
lished by Motorola Corporation and supported in silicon
products from various manufacturers. Parallel port 155 may
be implemented in accordance with any appropriate parallel
bus standard as may be desired in particular applications.

Configuration data bitstreams received through JTAG port
140, serial port 150, or parallel port 155 may be provided to
PLD 100 in encrypted form. Accordingly, PL.D 100 further
includes a decryption engine 125 which may be used to
decrypt configuration data through the use of a security key
115 (also referred to as a decipher key). In one embodiment,
decryption engine 125 may be implemented to support one or
more Advanced Encryption Standards (AES) (for example,
128-bit, 192-bit, and/or 256-bit encryption) as such encryp-
tion standards are understood by those skilled in the art.

Security key 115 may be programmed into various fuses of
PLD 100 by a key programmer 110 as further described
herein. Decryption engine 125 may use security key 115 to
decrypt raw encrypted configuration data received by PLD
100 through JTAG port 140, serial port 150, or parallel port
155. As illustrated, security key 115 may be provided to key
programmer 110 through JTAG port 140 and JTAG circuitry
170. PLD 100 may also be implemented with standard secu-
rity features 120 to prevent readback through JTAG port 140,
serial port 150, or parallel port 155 of configuration data
currently programmed into configuration memory 190.

20

25

30

40

45

50

55

60

65

4

As illustrated in FIG. 1, an external processor 105 may be
provided in communication with PL.D 100 through JTAG port
140. As further described herein, external processor 105 may
be provided with appropriate software for providing security
key 115 to PLD 100 and for verifying data bit values stored in
fuses of PLD 100.

Configuration data received through JTAG port 140, serial
port 150, or parallel port 155 may be selectively provided to
decryption engine 125 or a command decoder 165 through a
multiplexer 160 under the control of select signals 145 (la-
beled CFG[O0 .. . N]). In this regard, it will be appreciated that
incoming configuration data may include various embedded
commands which may be ascertained by command decoder
165 to provide appropriate control signals to other compo-
nents of PLD 100 through a multiplexer 175.

Configuration data received through JTAG port 140, serial
port 150, or parallel port 155 may also be provided to PLD
100 in compressed form. Accordingly, PLD 100 further
includes a decompression engine 130. For example,
decrypted configuration data processed by decryption engine
125 may, if in compressed form, be decompressed by a
decompression engine 130 to obtain the configuration data to
be programmed into configuration memory 190 of PLD 100.

As illustrated, unencrypted, uncompressed configuration
data may be provided (e.g., via a multiplexer 135) to an error
checking engine 180 and SRAM programmer 185. In one
embodiment, error checking engine 180 may be configured to
check incoming configuration data against cyclic redundancy
codes (CRCs) embedded in the configuration data bitstream.

FIG. 2 illustrates a block diagram of key programmer 110
of PLD 100 in accordance with an embodiment of the present
invention. Key programmer 110 includes a plurality of one
time programmable (OTP) fuses 205 which may be used to
store security key 115. In one embodiment, OTP fuses 205
may be implemented as poly fuses.

As will be appreciated by those skilled in the art, various
manufacturing inconsistencies may cause individual OTP
fuses 205 to exhibit underprogrammed or overprogrammed
behavior. When such behavior occurs, incorrect data bit val-
ues may be stored in OTP fuses 205. However, in practice, the
likelihood of such manufacturing inconsistencies occurring
in two or more adjacent ones of OTP fuses 205 within PLD
100 is relatively unlikely. Therefore, in accordance with an
aspect of the present invention, the effect of such manufac-
turing inconsistencies can be minimized by associating three
or more of OTP fuses 205 with each data bit value of security
key 115.

In this regard, OTP fuses 205 may be implemented to
include security fuses 210, redundant fuses 220, and test fuses
230 arranged in a plurality of subsets (for example, n subsets
as illustrated). Each subset of OTP fuses 205 may be associ-
ated with a single data bit value of security key 115 to permit
a security key of n bits to be stored by OTP fuses 205. In one
embodiment, individual fuses in each subset of OTP fuses
205 may be physically located in close proximity to each
other (for example, adjacent to each other within key pro-
grammer 110). Although FIG. 2 illustrates n subsets each
including three of OTP fuses 205, it will be appreciated that
larger numbers of OTP fuses 205 may be used in each subset.

Key programmer 110 further includes a plurality of decod-
ers 240, wherein each decoder 240 is associated with a subset
of OTP fuses 205. Decoders 240 may be configured to pro-
vide a majority rule output value based on data bit values
stored by individual subsets of OTP fuses 205. For example,
in one embodiment, the logical function of each one of decod-
ers 240 may be expressed by the following Table 1:

US 7,675,313 Bl

5
TABLE 1
Decoder Key Fuse Redundant Fuse Test Fuse
(240) (210) (220) (230)
0 0 0 0
0 0 0 1
0 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

As shown in Table 1 above, the output value provided by
each decoder 240 will correspond to a 0 value when at least
two of its associated OTP fuses 205 are storing a 0 value.
Similarly, the output value provided by each decoder 240 will
correspond to a 1 value when at least two of its associated
OTP fuses 205 are storing a 1 value. Accordingly, in the event
that an OTP fuse 205 (for example, a key fuse 210, a redun-
dant fuse 220, or a test fuse 230) associated with a particular
data bit value of security key 115 exhibits underprogramming
or overprogramming, the actual data bit value of security key
115 may be provided by the associated decoder 240. It will be
appreciated that decoders 240 may be implemented with any
appropriate circuitry to provide the logical function set forth
in Table 1 or other type of logical function to provide the
correct data bit value.

Key programmer 110 further includes a shift register 250
and a hash circuit 255 which are collectively represented in
FIG. 2 as ablock 257. Shift register 250 may be implemented
as an n-bit shift register configured to receive security key 115
from JTAG port 140. Hash circuit 255 may be implemented to
perform hashing operations on security key 115 as further
described herein. A clock signal 235 may be provided to
block 257 to synchronize the operation of shift register 250
and hash circuit 255 with JTAG port 140 or decryption engine
125.

Security key 115 may be read into key programmer 110
through JTAG port 140 and JTAG circuitry 170 of FIG. 1. As
illustrated in FIG. 2, security key 115 is received by a multi-
plexer 260 which may be controlled by select signals 245.
Select signals 245 may be configured to pass security key 115
through multiplexer 260 to shift register 250. Data bit values
stored in shift register 250 may be provided to a multiplexer
280 under the control of select signals 245 and passed to
JTAG port 140.

Key programmer 110 further includes a multiplexer 290
under the control of select signals 245. As illustrated, multi-
plexer 290 may selectively provide a programming voltage
215 (labeled VPP) to security fuses 210, redundant fuses 220,
test fuses 230, or a key lock fuse 275. Programming voltage
215 may be implemented as any appropriate voltage for pro-
gramming OTP fuses 205. For example, in one embodiment,
programming voltage 215 may be approximately 3.3 volts. As
also illustrated, programming voltage 215 may be selectively
provided to multiplexer 290 in response to a program enable
signal 295.

Key programmer 110 further includes key lock fuse 275
which may be implemented as an OTP fuse for storing a data
bit value of a key lock register 270. After security key 115 has
been successfully stored in OTP fuses 205, key lock register
270 and key lock fuse 275 may be programmed in order to
prevent further programming of OTP fuses 205 and to activate
decryption engine 125. It will be appreciated that logic 277
may prevent the readout of data bit values stored in shift
register 250 after key lock register 270 is programmed.

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 illustrates a process of programming security key
115 into OTP fuses 205 in accordance with an embodiment of
the present invention. In operation 310, security key 115 is
initially read into shift register 250 from JTAG port 140
through multiplexer 260. For example, in one embodiment,
security key 115 may be created by a developer and provided
to PLD 100 from external processor 105 or another external
device in communication with PLD 100 through JTAG port
140. Shift register 250 provides security key 115 to hash
circuit 255 which performs a hashing operation on security
key 115 to obtain a hashed version of security key 115 (opera-
tion 320). In this regard, hashing operation 320 may be per-
formed in accordance with any appropriate hashing process
as may be desired for particular applications of PL.D 100.

In operation 330, the hashed version of security key 115 is
read back into shift register 250 from hash circuit 255. There-
after, shift register 250 attempts to program test fuses 230
with the hashed version of the security key 115. In this regard,
it will be appreciated that programming voltage 215 may be
provided to test fuses 230 through multiplexer 290 as previ-
ously discussed. In one embodiment, test fuses 230 may be
programmed in a serial fashion.

In operation 340, shift register 250 reads the data bit values
stored in test fuses 230 and passes them through logic 277 and
multiplexer 280 to external processor 105 through JTAG port
140. External processor 105 may be provided with appropri-
ate software for also performing the first hashing operation
(i.e., the operation performed by hash circuit 255) on security
key 115 and verifying that data bit values stored by test fuses
230 (i.e., data bit values passed back to external processor 105
from shift register 250) correspond to the hashed version of
security key 115. Accordingly, in operation 350, external
processor 105 verifies the data bit values read in operation
340 to determine whether they match the hashed version of
security key 115.

The process of FIG. 3 may be repeated a second time for
programming key fuses 210 and a third time for programming
redundant fuses 220. Optionally, if verification operation 350
for the first two iterations of the process indicates that data bit
values stored in test fuses 230 and key fuses 210 correspond
to the hashed version of security key 115, then the third
iteration of the process may be optionally omitted for redun-
dant fuses 220. In this regard, it will be appreciated that if test
fuses 230 and key fuses 210 are all correctly programmed
with the hashed version of security key 115, then decoders
240 will provide such values when read by shift register 250,
regardless of the values stored in redundant fuses 220.

Following the programming of OTP fuses 205, key lock
register 270 and key lock fuse 275 may each be programmed
to prevent subsequent readout of security key 115 from OTP
fuses 205 or shift register 250. For example, it will be appre-
ciated from FIG. 2 that if key lock fuse 275 exhibits a logical
high value, logic 277 will only pass a logical low value
through multiplexer 280, regardless of the data bit values
passed by shift register 250.

FIG. 4 illustrates additional processing performed on secu-
rity key 115 in accordance with an embodiment of the present
invention. As shown in FIG. 4, a hashed version of security
key 115 is programmed into OTP fuses 205 in accordance
with the process of FIG. 3 previously described herein. There-
after, in order to decrypt an encrypted configuration data
bitstream received by PLD 100, data bit values of OTP fuses
205 are read into shift register 250 from decoders 240 (opera-
tion 410). It will be appreciated that the data bit values read in
operation 410 will correspond to the hashed version of secu-
rity key 115 provided by operations 320 and 330 of FIG. 3.
The data bit values read in operation 410 are then passed to

US 7,675,313 Bl

7

hash circuit 255 which performs a further hashing operation
to provide a second hashed version (i.e., a double hashed
version) of security key 115 (operation 420). The second
hashed version of security key 115 is then read back into shift
register 250 which passes it on to decryption engine 125 as
also illustrated in FIG. 4 (operation 430) and described fur-
ther in reference to FIGS. 5A-B.

FIGS. 5A-B illustrate various components of PLD 100
which may be used for processing configuration data bit-
streams in accordance with embodiments of the present
invention. Referring to the embodiment of F1IG. 5A, PLD 100
is illustrated as being implemented with JTAG port 140. An
encrypted configuration data bitstream 510 which has been
encrypted by the second hashed version of security key 115 is
provided to JTAG port 140. Encrypted configuration data
bitstream 510 may be stored, for example, in an external
non-volatile memory in communication with PLD 100
through JTAG port 140.

Data received through JTAG port 140 (for example,
encrypted configuration data bitstream 510, commands, or
unencrypted configuration data) may be read into a register
520 of PLD 100 through a multiplexer 590 in 128-bit blocks,
and passed to decryption engine 125. As illustrated, data may
also be passed directly to a multiplexer 595.

Datareceived through JTAG port 140 may also be passed to
various other components 570 (labeled “Others”) of PLD 100
and/or out of JTAG port 140 (i.e., through a multiplexer 550)
under the control of JTAG circuitry 170 to other devices as
may be desired. In this regard, JTAG circuitry 170 may be
configured to decode a JTAG bypass command received at a
“TDI” pin of JTAG port 140. In response to the JTAG bypass
command, JTAG circuitry 170 may provide appropriate
select signals to multiplexers 550 and 590 to pass data
received at TDI pin to a bypass register (i.e., implemented as
one of components 570) and out a “TDO” pin of JTAG port
140 to be provided to another PL.D or other device which may
be connected with PLD 100. For example, in one embodi-
ment, a plurality of PLDs may be connected with each other
in a daisy chain fashion to permit configuration data bit-
streams to be passed from an external memory through PL.D
100 and on to a second PLD, as further described herein.

PLD 100 may also be provided with a bitstream engine 580
to facilitate the processing of data received through JTAG port
140. In operation, bitstream engine 580 may be configured to
initially select a logical 0 input of multiplexer 595 in order to
receive data provided at JTAG port 140. Bitstream engine 580
may also be configured to recognize various preamble codes
associated with configuration data bitstreams. For example,
in one embodiment, bitstream engine 580 may operate in a
first mode to recognize a first preamble code associated with
unencrypted configuration data bitstreams, and in a second
mode to recognize a second preamble code associated with
encrypted configuration data bitstreams.

If key lock fuse 275 is unprogrammed (i.e., security key
115 has not yet been programmed in OTP fuses 205), bit-
stream engine 580 may operate in the first mode. In this case,
if bitstream engine 580 receives a first preamble code asso-
ciated with an unencrypted configuration data bitstream, it
may pass the unencrypted configuration data bitstream on to
a data shift register 530 for programming into configuration
memory 190 by SRAM programmer 185 (illustrated in FIG.
1).

If, however, key lock fuse 275 is programmed, bitstream
engine 580 may operate in the second mode. Accordingly, if
bitstream engine 580 receives a preamble code associated
with an encrypted configuration data bitstream (e.g.,
encrypted configuration data bitstream 510), then bitstream

20

25

30

35

40

45

50

55

60

65

8

engine 580 may select a logical 1 input of multiplexer 595 to
receive decrypted data from decryption engine 125.

In this regard, the second hashed version of security key
115 may be read from OTP fuses 205 and passed from shift
register 250 to decryption engine 125 in the manner previ-
ously described in relation to FIG. 4. Decryption engine 125
may process each 128-bit block 520 of encrypted configura-
tion data bitstream 510 using the second hashed version of
security key 115 to obtain an original configuration data
bitstream 560 which is provided to bitstream engine 580
through multiplexer 595. Original configuration data bit-
stream 560 may then be passed on to data shift register 530 for
programming into configuration memory 190 by SRAM pro-
grammer 185 (illustrated in FIG. 1).

Error checking engine 180 performs error checking on
configuration data received through multiplexer 595 and pro-
grams a pass/fail register 540 with appropriate values corre-
sponding to the status of errors. As illustrated, the value of
pass/fail register 540 may be provided to JTAG port 140.

Referring now to the embodiment of FIG. 5B, PL.D 100 is
illustrated as being implemented with serial port 150. It will
be appreciated that the embodiment of FIG. 5B may be imple-
mented with parallel port 155 or a CPU port in addition to, or
in place of, serial port 150.

The various components common to both FIGS. 5A-B may
operate in the manner previously described with regard to
FIG. 5A. However, as illustrated, FIG. 5B further includes a
multiplexer 585 which may be implemented to pass data from
a “DI” pin to a “Dout” pin of serial port 150. Such a configu-
ration allows data received at DI pin to be passed to another
PLD or other device which may be connected with PL.D 100
as previously described in relation to FIG. 5A.

Also in the embodiment of FIG. 5B, bitstream engine 580
may be configured to recognize a serial bypass command
which may be received through serial port 150. In this regard,
decoder 165 (illustrated in FIG. 1) may be implemented as
part of bitstream engine 580 to decode the serial bypass
command. If bitstream engine 580 receives the serial bypass
command, then bitstream engine 580 may assert a select
signal 575 of multiplexer 585 to pass data from DI pin to Dout
pin and on to a second PLD until the second PLD indicates
that the data has been successfully received (e.g., by asserting
a “DONE” pin of the second PLD.

FIG. 6 illustrates a block diagram of a plurality of PL.Ds
100A and 100B (labeled ECP 1 and ECP 2) configured to
decrypt configuration data bitstreams using separate security
keys 115A and 115B, respectively, in accordance with an
embodiment of the present invention. It will be appreciated
that each of PLDs 100A and 100B may be implemented in
accordance with one or more embodiments of PL.D 100 pre-
viously described herein. Similarly, each of security keys
115A and 115B may be implemented in accordance with one
or more embodiments of security key 115 previously
described herein.

FIG. 6 further illustrates a CPU 620 in communication with
PLDs 100A and 100B to initiate loading of first and second
encrypted configuration data bitstreams 510A and 510B upon
toggling program pins 630A and 630B, respectively. PL.Ds
100A and 100B are provided with JTAG ports 140A and
140B to support programming of security keys 115A and
115B in OTP fuses of PLDs 100A and 100B, respectively, in
the manner previously described herein. PLDs 100A and
100B are also provided with serial ports 150A and 1508 to
receive encrypted configuration data from external devices.
In this regard, a non-volatile memory 610 (labeled SPI
FLASH) is provided in communication with a serial port
150A of PLD 100A.

US 7,675,313 Bl

9

As illustrated, first and second encrypted configuration
data bitstreams 510A and 510B, respectively, are stored in
non-volatile memory 610. Each of first and second encrypted
configuration data bitstreams 510A and 510B may be
encrypted using a second hashed version of each of security
keys 115A and 115B, respectively. First encrypted configu-
ration data bitstream 510A may be loaded into PLD 100A
through serial port 150A and decrypted by PLD 100A using
security key 115A stored in OTP fuses of PLLD 100A in the
manner previously described herein. In addition, second
encrypted configuration data bitstream 510B may be passed
to PLD 100A through serial port 150A, passed on to PLD
100B through the daisy chain configuration of serial port
150A and serial port 150B, and decrypted by PLD 100B using
security key 115B stored in OTP fuses of PLD 100B.

In view of the present disclosure, it will be appreciated that
a PLD implemented in accordance with one or more of the
various embodiments disclosed herein may support the pro-
gramming and subsequent retrieval of security keys with high
confidence. In particular, by storing each data bit value of the
security key in a plurality of associated OTP fuses and reading
back the bit value stored by a majority of the associated OTP
fuses, the effects of overprogramming or underprogramming
may be reduced. Advantageously, by storing a first hashed
version of the security key and performing decryption using a
second hashed version of the security key, the ability of third
parties to readily discern the security key through inspection
of the OTP fuses can also be impaired.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.

We claim:

1. A programmable logic device (PLD) comprising:

a volatile configuration memory adapted to be pro-
grammed with configuration data to determine user-
defined features of the PLD;

a plurality of programmable fuses, each fuse adapted to
store a bit;

a circuit adapted to program the fuses with a security key
comprising a plurality of data bit values;

a plurality of decoders, each decoder associated with a
subset of at least three fuses and adapted to retrieve a
single data bit value of the security key by decoding
multiple bits stored within the associated subset of fuses,
wherein the decoder is adapted to decode the multiple
bits by providing the bit value stored by the majority of
the fuses within the subset as the single data bit value;
and

a decryption engine adapted to decrypt an encrypted con-
figuration data bitstream using the retrieved security key.

2. The PLD of claim 1, wherein the fuses are one-time-
programmable (OTP) fuses.

3. The PLD of claim 1, wherein the security key is not
discernable by visual inspection of the fuses.

4. The PLD of claim 1, further comprising a hash circuit
adapted to hash the retrieved security key to obtain a hashed
version of the retrieved security key, wherein the decryption
engine is adapted to use the hashed version of the retrieved
security key.

20

25

30

35

40

45

50

55

60

10

5. The PLD of claim 1, further comprising:

a data port adapted to receive the security key from a device

external to the PLD; and

a hash circuit adapted to hash the received security key to

obtain a hashed version of the received security key,
wherein the hashed version of the received security key
is used to program the fuses.

6. The PLD of claim 1, further comprising a key lock circuit
adapted to prevent readback of the fuses to a device external
to the PLD.

7. The PLD of claim 1, wherein the fuses comprise:

a plurality of test fuses;

a plurality of key fuses; and

a plurality of redundant fuses,

wherein the associated subset of fuses includes a test fuse,

a key fuse, and a redundant fuse.

8. The PLD of claim 1, wherein the fuses within the subset
are physically located in close proximity to teach other within
the PLD.

9. A programmable logic device (PLD) comprising: a vola-
tile configuration memory adapted to be programmed with
configuration data to determine user-defined features of the
PLD; a plurality of programmable fuses, each fuse adapted to
store a bit; a circuit adapted to program the fuses with a
security key comprising a plurality of data bit values; a hash
circuit adapted to hash the security key stored in the plurality
of fuses to obtain a hashed version of the security key; and a
decryption engine adapted to use the hashed version of the
security key to decrypt an encrypted configuration data bit-
stream into configuration data for programming the volatile
configuration memory; a plurality of decoders, each decoder
associated with a subset of at least three fuses and adapted to
retrieve a single data bit value of the security key by decoding
the multiple bits stored within the associated subset of fuses.

10. The PLD of claim 9, wherein the fuses within the subset
are physically located in close proximity to teach other within
the PLD.

11. A programmable logic device (PLD) comprising: a
volatile configuration memory adapted to be programmed
with configuration data to determine user-defined features of
the PLD; a plurality of programmable fuses, each fuse
adapted to store a bit; a circuit adapted to program the fuses
with a security key comprising a plurality of data bit values; a
decryption engine adapted to use the security key to decrypt
an encrypted configuration data bitstream into configuration
data for programming the volatile configuration memory; and
a key lock circuit adapted to prevent readback of the fuses to
a device external to the PLD; a plurality of decoders, each
decoder associated with a subset of at least three fuses and
adapted to retrieve a single data bit value of the security key
by decoding the multiple bits stored within the associated
subset of fuses.

12. The PLD of claim 11, wherein the fuses within the
subset are physically located in close proximity to teach other
within the PLD.

13. The PLD of claim 11, wherein the key lock circuit
includes a key lock register and a key lock fuse.

#* #* #* #* #*

