
USOO7675313B1

(12) United States Patent (10) Patent No.: US 7.675,313 B1
Tang et al. (45) Date of Patent: Mar. 9, 2010

(54) METHODS AND SYSTEMS FOR STORING A 6.212,639 B1 4/2001 Erickson et al. T26/26
SECURITY KEY USING PROGRAMMABLE 6,654,889 B1 * 1 1/2003 Trimberger T13, 191
FUSES 6,876,594 B2 * 4/2005 Griesmer et al. 36.5/225.7

6,944,083 B2 * 9/2005 Pedlow, Jr. 365,225.7
75 7.284,134 B2 * 10/2007 Fujiwara et al. 713, 189
(75) Inventors: ex Tag: ARSS ER 7.339.400 B1* 3/2008 Walstrum et al. 326,41

en, San JOSe, ; San- a KOW, 2002/01991 10 A1* 12/2002 Kean T13, 189
San Jose, CA (US)

OTHER PUBLICATIONS

(73) Assignee: Lattice Semiconductor Corporation, Altera R, Chapter 7, Configuring Stratis II Devices, Jul. 2004, pp.
Hillsboro, OR (US) 7-1-7-94.

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35 Primary Examiner James H. Cho
U.S.C. 154(b) by 267 days. Assistant Examiner Christopher Lo

(74) Attorney, Agent, or Firm Haynes and Boone, LLP
(21) Appl. No.: 11/498,645

(57) ABSTRACT
(22) Filed: Aug. 3, 2006

Systems and methods are disclosed herein to provide
(51) Int. Cl. improved security key techniques for programmable logic

HO3K 9/00 (2006.01) devices. For example, in accordance with an embodiment of
(52) U.S. Cl. 326/8; 716/16; 713/189; the present invention, a method of providing data security for

713/193: 326/38 a programmable logic device (PLD) includes programming a
(58) Field of Classification Search 326/89, plurality of programmable fuses that stores a security key

326/37 47; 713/189-193, 1, 135, 180; 716/16; comprising a plurality of data bit values, wherein each data bit
711/100, 102, 152, 153,216 value is associated with a respective subset of at least three of

See application file for complete search history. the fuses. The security key is retrieved from the fuses using
the data bit values stored by each subset of the fuses. An

(56) References Cited encrypted configuration data bitstream is decrypted using the
U.S. PATENT DOCUMENTS retrieved security key to obtain an original configuration data

M bitstream to configure the PLD.
5,838,167 A * 1 1/1998 Erickson et al. 326/38
6,118,869 A 9/2000 Kelem et al. 380/44 13 Claims, 6 Drawing Sheets

110- 295
(.) : WPP. SUPER

WPP RAILS VOLAEFOR
220(n) 230(n) 290 PROGRAMMING

f\ - 215 2201) 230 11
TO ACTIVATE : (1) 230(1) AL all r-295
THEAES : 210 Ox R.E.

DESRON 275- A.Y. ?e- 210(n) w - - - ?e 00 : ENABLE : ? is 3-le- a is: COMMAND : w ... ii. It ... iii. FROMJTAG
: ; PORT

SECURITY : x DECODER W s 240(n) :
KEY 270 :
115 200 E 280 : --- G 40

140 10 :
DATAN : 260 28-BIT KEY SHIFT REGISTER - 250 O1 DATA OUT

FROM TD OF : - OOJ : TO TDO OF
JTAGPORT HASHCIRCUIT 255 ND JTAGPORT

V-257

- /

245 DATA CLOCKFROMTCK OF SERIALENCRYPTION DISABLE READ OUT OF
(S0, S1) JTAGPORT OR FROM THE KEY FOR THE AES ENCRYPTION KEY

REGISTER SELECTION FROM AES DECRYPTION ENGINE DECRYPTION ENGINE AFTER KEYLOCKFUSE
PROGRAMMING AND READ IS PROGRAMMED,

COMMAND OF THE JTAGPORT

U.S. Patent Mar. 9, 2010 Sheet 3 of 6 US 7.675,313 B1

310

READSECURITY KEY INTO SHIFT REGISTER FROM EXTERNAL DEVICE

- 4
PERFORM HASHING OPERATION ON SECURITY KEY

PROGRAM FUSES WITH HASHED SECURITY KEY

READ STORED DATA VALUES FROM FUSES INTO SHIFT REGISTER

VERIFY DATA VALUES OF FUSES

KEY INPUT FOR
PROGRAMMING

OUTPUT FOR
FUSE
PATTERN
VERIFICATION PROCESS

OF FIG. 3

(Gia (e) FIRST HASHING

SECOND
HASHING
(420)

DECRYPTION
(K) ENGINE

125

FIG. 4

CAPTURE FOR
FUSE PATTERN

VERIFY

READ DATA
VALUES
FROM

DECODERS
(410)

PROVIDE
DOUBLE

HASHED KEY
TO THE AES
DECRYPTION
ENGINE. (430)

US 7.675,313 B1 Sheet 4 of 6 Mar. 9, 2010 U.S. Patent

US 7.675,313 B1

039

U.S. Patent

US 7,675,313 B1
1.

METHODS AND SYSTEMIS FOR STORING A
SECURITY KEY USING PROGRAMMABLE

FUSES

TECHNICAL FIELD

The present invention relates generally to electrical circuits
and, more particularly, to the security of programmable logic
devices.

BACKGROUND

Programmable logic devices (PLDs), such as field pro
grammable gate arrays (FPGAs) or complex programmable
logic devices (CPLDs), may be programmed with configura
tion data to provide various user-defined features. For
example, configuration data may be loaded from an external
non-volatile memory, such as a flash memory, into volatile
configuration memory of the PLD.
The particular configuration data bitstream loaded into the

PLD may be proprietary in nature, and as a result, it is desir
able for developers to maintain its secrecy. Because many
conventional non-volatile memories permit configuration
data bitstreams to be read by external devices, developers
may choose to encrypt configuration data bitstreams before
they are stored in external non-volatile memory and loaded
into the PLD.

Configuration data is often encrypted and decrypted
through the use of conventional security keys. For example, a
configuration data bitstream may be encrypted using a par
ticular security key and then stored in an external non-volatile
memory in encrypted form. The encrypted configuration data
bitstream may be loaded into the PLD from the external
non-volatile memory and decrypted by the PLD using the
appropriate security key stored onboard the PLD. The
decrypted configuration data may then be loaded into Volatile
configuration memory of the PLD. In Such applications, the
security of the configuration data largely depends on main
taining the secrecy of the security key and the manner in
which the security key is stored onboard the PLD.

However, existing approaches to onboard security key stor
age in PLDS is generally problematic. For example, in certain
implementations, the security key may be stored in Volatile
SRAM cells onboard the PLD which are maintained by a
battery. Nevertheless, the security key will be lost if there is a
disruption in the power supplied to the SRAM cells as a result
of for example, a battery failure.

In other implementations, the security key may be stored in
non-volatile memory onboard the PLD. Unfortunately, if
Such non-volatile memory exhibits a manufacturing defect,
individual data bit values of the security key may be incor
rectly stored. As a result, an erroneous security key may be
used by the PLD, thereby preventing the PLD from properly
decrypting incoming configuration data bitstreams.

Accordingly, there is a need for an improved approach to
maintaining the secrecy of security keys stored in non-vola
tile memory. In addition, there is a need for an improved
approach to the programming of security keys that reduces
the likelihood of incorrect data bit values of the security key
being stored in non-volatile memory.

SUMMARY

In accordance with one embodiment of the present inven
tion, a method of providing data security for a programmable
logic device (PLD) includes providing a plurality of program
mable fuses that stores a security key comprising a plurality

10

15

25

30

35

40

45

50

55

60

65

2
of data bit values, wherein each data bit value is associated
with a respective subset of at least three of the fuses; retriev
ing the security key from the fuses using the data bit values
stored by each Subset of the fuses; and decrypting an
encrypted configuration data bitstream using the retrieved
security key to obtain an original configuration data bitstream
to configure the PLD.

In accordance with another embodiment of the present
invention, a programmable logic device (PLD) includes Vola
tile configuration memory adapted to be programmed with
configuration data to determine user-defined features of the
PLD; a plurality of programmable fuses; a circuit adapted to
program the fuses with a security key comprising a plurality
of data bit values, wherein each data bit value is associated
with a respective subset of at least three of the fuses; a plu
rality of decoders adapted to retrieve the security key from the
fuses using the data bit values stored by each subset of the
fuses, wherein each decoder is associated with one of the
Subsets of the fuses; and a decryption engine adapted to
decrypt an encrypted configuration data bitstream using the
retrieved security key.

In accordance with another embodiment of the present
invention, a system includes a first programmable logic
device (PLD) comprising: Volatile configuration memory
adapted to be programmed with configuration data to deter
mine user-defined features of the first PLD; a first plurality of
programmable fuses that stores a first security key comprising
a plurality of data bit values, wherein each data bit value of the
first security key is associated with a respective Subset of at
least three of the first fuses; means for programming the first
fuses with the first security key; means for retrieving the first
security key from the first fuses using the data bit values
stored by each subset of the first fuses; and means for decrypt
ing a first encrypted configuration data bitstream using the
retrieved first security key to obtain a first original configu
ration data bitstream adapted to be programmed into the
volatile configuration memory of the first PLD.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more com
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi
ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a programmable logic
device (PLD) in accordance with an embodiment of the
present invention.

FIG. 2 illustrates a block diagram of circuitry for program
ming a security key in accordance with an embodiment of the
present invention.

FIG. 3 illustrates a process of programming a security key
in accordance with an embodiment of the present invention.

FIG. 4 illustrates additional processing performed on a
security key in accordance with an embodiment of the present
invention.

FIGS. 5A-B illustrate various components used for pro
cessing configuration data bitstreams in accordance with
embodiments of the present invention.

FIG. 6 illustrates a block diagram of a plurality of PLDs
configured to decrypt configuration data bitstreams using
separate security keys in accordance with an embodiment of
the present invention.

US 7,675,313 B1
3

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

The various techniques disclosed herein are applicable to a
wide variety of integrated circuits and applications. As an
exemplary implementation, a programmable logic device
having one-time-programmable (OTP) fuses will be utilized
to illustrate the techniques in accordance with one or more
embodiments of the present invention. However, it should be
understood that this is not limiting and that the techniques
disclosed herein may be implemented as desired, in accor
dance with one or more embodiments of the present inven
tion, within various types of integrated circuits and fuses.
Therefore, the techniques may be applied to integrated cir
cuits other than PLDs and fuses other than OTP fuses, such as
fuses implemented in flash or other non-volatile memory.

FIG. 1 illustrates a block diagram of a programmable logic
device (PLD) 100 in accordance with an embodiment of the
present invention. PLD 100 includes configuration memory
190 which may be implemented, for example, using volatile
SRAM cells. Configuration memory 190 controls the opera
tion of user logic 195 (e.g., LUT-based logic) which may
implement various user-defined features of PLD 100 based on
configuration data programmed into configuration memory
190 by an SRAM programmer 185.
PLD 100 may receive configuration data bitstreams from

an external non-volatile memory (not shown in FIG. 1) or
other device connected with PLD 100 through a JTAG port
140, a serial port 150, or a parallel port 155. It will be appre
ciated that JTAG port 140 may be implemented as a joint test
action group (JTAG) employing standards Such as Institute of
Electrical and Electronics Engineers (IEEE) 1149.1 or 1532
standards. PLD 100 may also include dedicated JTAG cir
cuitry 170 to support the operation of JTAG port 140. Serial
port 150 may be implemented as a Serial Peripheral Interface
(SPI) port 124 in accordance with a serial bus standard estab
lished by Motorola Corporation and supported in silicon
products from various manufacturers. Parallel port 155 may
be implemented in accordance with any appropriate parallel
bus standard as may be desired in particular applications.

Configuration data bitstreams received through JTAG port
140, serial port 150, or parallel port 155 may be provided to
PLD 100 in encrypted form. Accordingly, PLD 100 further
includes a decryption engine 125 which may be used to
decrypt configuration data through the use of a security key
115 (also referred to as a decipher key). In one embodiment,
decryption engine 125 may be implemented to support one or
more Advanced Encryption Standards (AES) (for example,
128-bit, 192-bit, and/or 256-bit encryption) as such encryp
tion standards are understood by those skilled in the art.

Security key 115 may be programmed into various fuses of
PLD 100 by a key programmer 110 as further described
herein. Decryption engine 125 may use security key 115 to
decrypt raw encrypted configuration data received by PLD
100 through JTAG port 140, serial port 150, or parallel port
155. As illustrated, security key 115 may be provided to key
programmer 110 through JTAG port 140 and JTAG circuitry
170. PLD 100 may also be implemented with standard secu
rity features 120 to prevent readback through JTAG port 140,
serial port 150, or parallel port 155 of configuration data
currently programmed into configuration memory 190.

10

15

25

30

35

40

45

50

55

60

65

4
As illustrated in FIG. 1, an external processor 105 may be

provided in communication with PLD 100 through JTAG port
140. As further described herein, external processor 105 may
be provided with appropriate software for providing security
key 115 to PLD 100 and for verifying data bit values stored in
fuses of PLD 100.

Configuration data received through JTAG port 140, serial
port 150, or parallel port 155 may be selectively provided to
decryption engine 125 or a command decoder 165 through a
multiplexer 160 under the control of select signals 145 (la
beled CFGO ...N). In this regard, it will be appreciated that
incoming configuration data may include various embedded
commands which may be ascertained by command decoder
165 to provide appropriate control signals to other compo
nents of PLD 100 through a multiplexer 175.

Configuration data received through JTAG port 140, serial
port 150, or parallel port 155 may also be provided to PLD
100 in compressed form. Accordingly, PLD 100 further
includes a decompression engine 130. For example,
decrypted configuration data processed by decryption engine
125 may, if in compressed form, be decompressed by a
decompression engine 130 to obtain the configuration data to
be programmed into configuration memory 190 of PLD 100.
As illustrated, unencrypted, uncompressed configuration

data may be provided (e.g., via a multiplexer 135) to an error
checking engine 180 and SRAM programmer 185. In one
embodiment, error checking engine 180 may be configured to
check incoming configuration data against cyclic redundancy
codes (CRCs) embedded in the configuration data bitstream.

FIG. 2 illustrates a block diagram of key programmer 110
of PLD 100 in accordance with an embodiment of the present
invention. Key programmer 110 includes a plurality of one
time programmable (OTP) fuses 205 which may be used to
store security key 115. In one embodiment, OTP fuses 205
may be implemented as poly fuses.
As will be appreciated by those skilled in the art, various

manufacturing inconsistencies may cause individual OTP
fuses 205 to exhibit underprogrammed or overprogrammed
behavior. When such behavior occurs, incorrect data bit val
ues may be stored in OTP fuses 205. However, in practice, the
likelihood of Such manufacturing inconsistencies occurring
in two or more adjacent ones of OTP fuses 205 within PLD
100 is relatively unlikely. Therefore, in accordance with an
aspect of the present invention, the effect of Such manufac
turing inconsistencies can be minimized by associating three
or more of OTP fuses 205 with each data bit value of security
key 115.

In this regard, OTP fuses 205 may be implemented to
include security fuses 210, redundant fuses 220, and test fuses
230 arranged in a plurality of subsets (for example, n subsets
as illustrated). Each subset of OTP fuses 205 may be associ
ated with a single data bit value of security key 115 to permit
a security key of n bits to be stored by OTP fuses 205. In one
embodiment, individual fuses in each subset of OTP fuses
205 may be physically located in close proximity to each
other (for example, adjacent to each other within key pro
grammer 110). Although FIG. 2 illustrates n subsets each
including three of OTP fuses 205, it will be appreciated that
larger numbers of OTP fuses 205 may be used in each subset.
Key programmer 110 further includes a plurality of decod

ers 240, wherein each decoder 240 is associated with a subset
of OTP fuses 205. Decoders 240 may be configured to pro
vide a majority rule output value based on data bit values
stored by individual subsets of OTP fuses 205. For example,
in one embodiment, the logical function of each one of decod
ers 240 may be expressed by the following Table 1:

US 7,675,313 B1
5

TABLE 1.

Decoder Key Fuse Redundant Fuse Test Fuse
(240) (210) (220) (230)

O O O O
O O O 1
O O 1 O
1 O 1 1
O 1 O O
1 1 O 1
1 1 1 O
1 1 1 1

As shown in Table 1 above, the output value provided by
each decoder 240 will correspond to a 0 value when at least
two of its associated OTP fuses 205 are storing a 0 value.
Similarly, the output value provided by each decoder 240 will
correspond to a 1 value when at least two of its associated
OTP fuses 205 are storing a 1 value. Accordingly, in the event
that an OTP fuse 205 (for example, a key fuse 210, a redun
dant fuse 220, or a test fuse 230) associated with a particular
data bit value of security key 115 exhibits underprogramming
or overprogramming, the actual data bit value of security key
115 may be provided by the associated decoder 240. It will be
appreciated that decoders 240 may be implemented with any
appropriate circuitry to provide the logical function set forth
in Table 1 or other type of logical function to provide the
correct data bit value.
Key programmer 110 further includes a shift register 250

and a hash circuit 255 which are collectively represented in
FIG.2 as a block 257. Shift register 250 may be implemented
as an n-bit shift register configured to receive security key 115
from JTAG port 140. Hash circuit 255 may be implemented to
perform hashing operations on security key 115 as further
described herein. A clock signal 235 may be provided to
block 257 to synchronize the operation of shift register 250
and hash circuit 255 with JTAG port 140 or decryption engine
125.

Security key 115 may be read into key programmer 110
through JTAG port 140 and JTAG circuitry 170 of FIG.1. As
illustrated in FIG. 2, security key 115 is received by a multi
plexer 260 which may be controlled by select signals 245.
Select signals 245 may be configured to pass security key 115
through multiplexer 260 to shift register 250. Data bit values
stored in shift register 250 may be provided to a multiplexer
280 under the control of select signals 245 and passed to
JTAG port 140.
Key programmer 110 further includes a multiplexer 290

under the control of select signals 245. As illustrated, multi
plexer 290 may selectively provide a programming Voltage
215 (labeled VPP) to security fuses 210, redundant fuses 220,
test fuses 230, or a key lock fuse 275. Programming voltage
215 may be implemented as any appropriate Voltage for pro
gramming OTP fuses 205. For example, in one embodiment,
programming Voltage 215 may be approximately 3.3 volts. As
also illustrated, programming Voltage 215 may be selectively
provided to multiplexer 290 in response to a program enable
signal 295.
Key programmer 110 further includes key lock fuse 275

which may be implemented as an OTP fuse for storing a data
bit value of a key lock register 270. After security key 115 has
been successfully stored in OTP fuses 205, key lock register
270 and key lock fuse 275 may be programmed in order to
prevent further programming of OTP fuses 205 and to activate
decryption engine 125. It will be appreciated that logic 277
may prevent the readout of data bit values stored in shift
register 250 after key lock register 270 is programmed.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 3 illustrates a process of programming security key

115 into OTP fuses 205 inaccordance with an embodiment of
the present invention. In operation 310, security key 115 is
initially read into shift register 250 from JTAG port 140
through multiplexer 260. For example, in one embodiment,
security key 115 may be created by a developer and provided
to PLD 100 from external processor 105 or another external
device in communication with PLD 100 through JTAG port
140. Shift register 250 provides security key 115 to hash
circuit 255 which performs a hashing operation on security
key 115 to obtain a hashed version of security key 115 (opera
tion 320). In this regard, hashing operation 320 may be per
formed in accordance with any appropriate hashing process
as may be desired for particular applications of PLD 100.

In operation 330, the hashed version of security key 115 is
readback into shift register 250 from hash circuit 255. There
after, shift register 250 attempts to program test fuses 230
with the hashed version of the security key 115. In this regard,
it will be appreciated that programming Voltage 215 may be
provided to test fuses 230 through multiplexer 290 as previ
ously discussed. In one embodiment, test fuses 230 may be
programmed in a serial fashion.

In operation 340, shift register 250 reads the data bit values
stored intest fuses 230 and passes them through logic 277 and
multiplexer 280 to external processor 105 through JTAG port
140. External processor 105 may be provided with appropri
ate software for also performing the first hashing operation
(i.e., the operation performed by hash circuit 255) on security
key 115 and verifying that data bit values stored by test fuses
230 (i.e., data bit values passed back to external processor 105
from shift register 250) correspond to the hashed version of
security key 115. Accordingly, in operation 350, external
processor 105 verifies the data bit values read in operation
340 to determine whether they match the hashed version of
security key 115.
The process of FIG.3 may be repeated a second time for

programming key fuses 210 and a third time for programming
redundant fuses 220. Optionally, if verification operation 350
for the first two iterations of the process indicates that data bit
values stored in test fuses 230 and key fuses 210 correspond
to the hashed version of security key 115, then the third
iteration of the process may be optionally omitted for redun
dant fuses 220. In this regard, it will be appreciated that if test
fuses 230 and key fuses 210 are all correctly programmed
with the hashed version of security key 115, then decoders
240 will provide such values when read by shift register 250,
regardless of the values stored in redundant fuses 220.

Following the programming of OTP fuses 205, key lock
register 270 and key lock fuse 275 may each be programmed
to prevent subsequent readout of security key 115 from OTP
fuses 205 or shift register 250. For example, it will be appre
ciated from FIG. 2 that if key lock fuse 275 exhibits a logical
high value, logic 277 will only pass a logical low value
through multiplexer 280, regardless of the data bit values
passed by shift register 250.

FIG. 4 illustrates additional processing performed on Secu
rity key 115 in accordance with an embodiment of the present
invention. As shown in FIG. 4, a hashed version of security
key 115 is programmed into OTP fuses 205 in accordance
with the process of FIG.3 previously described herein. There
after, in order to decrypt an encrypted configuration data
bitstream received by PLD 100, data bit values of OTP fuses
205 are read into shift register 250 from decoders 240 (opera
tion 410). It will be appreciated that the data bit values read in
operation 410 will correspond to the hashed version of secu
rity key 115 provided by operations 320 and 330 of FIG. 3.
The data bit values read in operation 410 are then passed to

US 7,675,313 B1
7

hash circuit 255 which performs a further hashing operation
to provide a second hashed version (i.e., a double hashed
version) of security key 115 (operation 420). The second
hashed version of security key 115 is then read back into shift
register 250 which passes it on to decryption engine 125 as
also illustrated in FIG. 4 (operation 430) and described fur
ther in reference to FIGS 5A-B.

FIGS. 5A-B illustrate various components of PLD 100
which may be used for processing configuration data bit
streams in accordance with embodiments of the present
invention. Referring to the embodiment of FIG.5A, PLD 100
is illustrated as being implemented with JTAG port 140. An
encrypted configuration data bitstream 510 which has been
encrypted by the second hashed version of security key 115 is
provided to JTAG port 140. Encrypted configuration data
bitstream 510 may be stored, for example, in an external
non-volatile memory in communication with PLD 100
through JTAG port 140.

Data received through JTAG port 140 (for example,
encrypted configuration data bitstream 510, commands, or
unencrypted configuration data) may be read into a register
520 of PLD 100 through a multiplexer 590 in 128-bit blocks,
and passed to decryption engine 125. As illustrated, data may
also be passed directly to a multiplexer 595.

Data received through JTAG port 140 may also be passed to
various other components 570 (labeled “Others') of PLD 100
and/or out of JTAG port 140 (i.e., through a multiplexer 550)
under the control of JTAG circuitry 170 to other devices as
may be desired. In this regard, JTAG circuitry 170 may be
configured to decode a JTAG bypass command received at a
“TDI’pin of JTAG port 140. In response to the JTAG bypass
command, JTAG circuitry 170 may provide appropriate
select signals to multiplexers 550 and 590 to pass data
received at TDI pinto a bypass register (i.e., implemented as
one of components 570) and out a “TDO pin of JTAG port
140 to be provided to another PLD or other device which may
be connected with PLD 100. For example, in one embodi
ment, a plurality of PLDS may be connected with each other
in a daisy chain fashion to permit configuration data bit
streams to be passed from an external memory through PLD
100 and on to a second PLD, as further described herein.
PLD 100 may also be provided with a bitstream engine 580

to facilitate the processing of data received through JTAG port
140. In operation, bitstream engine 580 may be configured to
initially select a logical 0 input of multiplexer 595 in order to
receive data provided at JTAG port 140. Bitstream engine 580
may also be configured to recognize various preamble codes
associated with configuration data bitstreams. For example,
in one embodiment, bitstream engine 580 may operate in a
first mode to recognize a first preamble code associated with
unencrypted configuration data bitstreams, and in a second
mode to recognize a second preamble code associated with
encrypted configuration data bitstreams.

If key lock fuse 275 is unprogrammed (i.e., security key
115 has not yet been programmed in OTP fuses 205), bit
stream engine 580 may operate in the first mode. In this case,
if bitstream engine 580 receives a first preamble code asso
ciated with an unencrypted configuration data bitstream, it
may pass the unencrypted configuration data bitstream on to
a data shift register 530 for programming into configuration
memory 190 by SRAM programmer 185 (illustrated in FIG.
1).

If, however, key lock fuse 275 is programmed, bitstream
engine 580 may operate in the second mode. Accordingly, if
bitstream engine 580 receives a preamble code associated
with an encrypted configuration data bitstream (e.g.,
encrypted configuration data bitstream 510), then bitstream

10

15

25

30

35

40

45

50

55

60

65

8
engine 580 may select a logical 1 input of multiplexer 595 to
receive decrypted data from decryption engine 125.

In this regard, the second hashed version of security key
115 may be read from OTP fuses 205 and passed from shift
register 250 to decryption engine 125 in the manner previ
ously described in relation to FIG. 4. Decryption engine 125
may process each 128-bit block 520 of encrypted configura
tion data bitstream 510 using the second hashed version of
security key 115 to obtain an original configuration data
bitstream 560 which is provided to bitstream engine 580
through multiplexer 595. Original configuration data bit
stream 560 may then be passed on to data shift register 530 for
programming into configuration memory 190 by SRAM pro
grammer 185 (illustrated in FIG. 1).

Error checking engine 180 performs error checking on
configuration data received through multiplexer 595 and pro
grams a pass/fail register 540 with appropriate values corre
sponding to the status of errors. As illustrated, the value of
pass/fail register 540 may be provided to JTAG port 140.

Referring now to the embodiment of FIG. 5B, PLD 100 is
illustrated as being implemented with serial port 150. It will
be appreciated that the embodiment of FIG.5B may be imple
mented with parallel port 155 or a CPU port in addition to, or
in place of, serial port 150.
The various components common to both FIGS.5A-B may

operate in the manner previously described with regard to
FIG. 5A. However, as illustrated, FIG. 5B further includes a
multiplexer 585 which may be implemented to pass data from
a “DI’pin to a “Dout' pin of serial port 150. Such a configu
ration allows data received at DI pin to be passed to another
PLD or other device which may be connected with PLD 100
as previously described in relation to FIG. 5A.

Also in the embodiment of FIG. 5B, bitstream engine 580
may be configured to recognize a serial bypass command
which may be received through serial port 150. In this regard,
decoder 165 (illustrated in FIG. 1) may be implemented as
part of bitstream engine 580 to decode the serial bypass
command. If bitstream engine 580 receives the serial bypass
command, then bitstream engine 580 may assert a select
signal 575 of multiplexer 585 to pass data from DI pinto Dout
pin and on to a second PLD until the second PLD indicates
that the data has been Successfully received (e.g., by asserting
a “DONE” pin of the second PLD.

FIG. 6 illustrates a block diagram of a plurality of PLDs
100A and 100B (labeled ECP 1 and ECP 2) configured to
decrypt configuration data bitstreams using separate security
keys 115A and 115B, respectively, in accordance with an
embodiment of the present invention. It will be appreciated
that each of PLDs 100A and 100B may be implemented in
accordance with one or more embodiments of PLD 100 pre
viously described herein. Similarly, each of security keys
115A and 115B may be implemented in accordance with one
or more embodiments of security key 115 previously
described herein.

FIG. 6 further illustrates a CPU 620 incommunication with
PLDs 100A and 100B to initiate loading of first and second
encrypted configuration data bitstreams 510A and 510B upon
toggling program pins 630A and 630B, respectively. PLDs
100A and 100B are provided with JTAG ports 140A and
140B to support programming of security keys 115A and
115B in OTP fuses of PLDs 100A and 100B, respectively, in
the manner previously described herein. PLDs 100A and
100B are also provided with serial ports 150A and 150B to
receive encrypted configuration data from external devices.
In this regard, a non-volatile memory 610 (labeled SPI
FLASH) is provided in communication with a serial port
1SOA of PLD 1 OOA.

US 7,675,313 B1

As illustrated, first and second encrypted configuration
data bitstreams 510A and 510B, respectively, are stored in
non-volatile memory 610. Each of first and second encrypted
configuration data bitstreams 510A and 510B may be
encrypted using a second hashed version of each of security
keys 115A and 115B, respectively. First encrypted configu
ration data bitstream 510A may be loaded into PLD 100A
through serial port 150A and decrypted by PLD 100A using
security key 115A stored in OTP fuses of PLD 100A in the
manner previously described herein. In addition, second
encrypted configuration data bitstream 510B may be passed
to PLD 100A through serial port 150A, passed on to PLD
100B through the daisy chain configuration of serial port
150A and serial port 150B, and decrypted by PLD 100Busing
security key 115B stored in OTP fuses of PLD 100B.

In view of the present disclosure, it will be appreciated that
a PLD implemented in accordance with one or more of the
various embodiments disclosed herein may support the pro
gramming and Subsequent retrieval of security keys with high
confidence. In particular, by storing each data bit value of the
security key in a plurality of associated OTP fuses and reading
back the bit value stored by a majority of the associated OTP
fuses, the effects of overprogramming or underprogramming
may be reduced. Advantageously, by storing a first hashed
version of the security key and performing decryption using a
second hashed version of the security key, the ability of third
parties to readily discern the security key through inspection
of the OTP fuses can also be impaired.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.
We claim:
1. A programmable logic device (PLD) comprising:
a volatile configuration memory adapted to be pro
grammed with configuration data to determine user
defined features of the PLD:

a plurality of programmable fuses, each fuse adapted to
store a bit;

a circuit adapted to program the fuses with a security key
comprising a plurality of data bit values;

a plurality of decoders, each decoder associated with a
subset of at least three fuses and adapted to retrieve a
single data bit value of the security key by decoding
multiple bits stored within the associated subset offuses,
wherein the decoder is adapted to decode the multiple
bits by providing the bit value stored by the majority of
the fuses within the subset as the single data bit value;
and

a decryption engine adapted to decrypt an encrypted con
figuration data bitstream using the retrieved security key.

2. The PLD of claim 1, wherein the fuses are one-time
programmable (OTP) fuses.

3. The PLD of claim 1, wherein the security key is not
discernable by visual inspection of the fuses.

4. The PLD of claim 1, further comprising a hash circuit
adapted to hash the retrieved security key to obtain a hashed
version of the retrieved security key, wherein the decryption
engine is adapted to use the hashed version of the retrieved
security key.

10

15

25

30

35

40

45

50

55

60

10
5. The PLD of claim 1, further comprising:
a data port adapted to receive the security key from a device

external to the PLD; and
a hash circuit adapted to hash the received security key to

obtain a hashed version of the received security key,
wherein the hashed version of the received security key
is used to program the fuses.

6. The PLD of claim 1, further comprising a key lock circuit
adapted to prevent readback of the fuses to a device external
to the PLD.

7. The PLD of claim 1, wherein the fuses comprise:
a plurality of test fuses;
a plurality of key fuses; and
a plurality of redundant fuses,
wherein the associated subset of fuses includes a test fuse,

a key fuse, and a redundant fuse.
8. The PLD of claim 1, wherein the fuses within the subset

are physically located in close proximity to teach other within
the PLD.

9. A programmable logic device (PLD) comprising: a Vola
tile configuration memory adapted to be programmed with
configuration data to determine user-defined features of the
PLD; a plurality of programmable fuses, each fuse adapted to
store a bit; a circuit adapted to program the fuses with a
security key comprising a plurality of data bit values; a hash
circuit adapted to hash the security key stored in the plurality
of fuses to obtain a hashed version of the security key; and a
decryption engine adapted to use the hashed version of the
security key to decrypt an encrypted configuration data bit
stream into configuration data for programming the volatile
configuration memory; a plurality of decoders, each decoder
associated with a Subset of at least three fuses and adapted to
retrieve a single data bit value of the security key by decoding
the multiple bits stored within the associated subset of fuses.

10. The PLD of claim 9, wherein the fuses within the subset
are physically located in close proximity to teach other within
the PLD.

11. A programmable logic device (PLD) comprising: a
Volatile configuration memory adapted to be programmed
with configuration data to determine user-defined features of
the PLD; a plurality of programmable fuses, each fuse
adapted to store a bit; a circuit adapted to program the fuses
with a security key comprising a plurality of data bit values; a
decryption engine adapted to use the security key to decrypt
an encrypted configuration data bitstream into configuration
data for programming the Volatile configuration memory; and
a key lock circuit adapted to prevent readback of the fuses to
a device external to the PLD; a plurality of decoders, each
decoder associated with a subset of at least three fuses and
adapted to retrieve a single data bit value of the security key
by decoding the multiple bits stored within the associated
subset of fuses.

12. The PLD of claim 11, wherein the fuses within the
Subset are physically located in close proximity to teach other
within the PLD.

13. The PLD of claim 11, wherein the key lock circuit
includes a key lock register and a key lock fuse.

k k k k k

