
(12) United States Patent
Tang et al.

US007570078B1

(10) Patent No.: US 7,570,078 B1
(45) Date of Patent: Aug. 4, 2009

(54) PROGRAMMABLE LOGIC DEVICE
PROVIDING SERAL PERPHERAL
INTERFACES

(75) Inventors: Howard Tang, San Jose, CA (US);
Roger Spinti, Milpitas, CA (US);
San-Ta Kow, San Jose, CA (US)

(73) Assignee: Lattice Semiconductor Corporation,
Hillsboro, OR (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 30 days.

(21)

(22)

Appl. No.: 11/761,221

Filed: Jun. 11, 2007

Related U.S. Application Data
(63) Continuation-in-part of application No. 1 1/446,548,

filed on Jun. 2, 2006, now Pat. No. 7,378,873.

Int. C.
H03K 19/177 (2006.01)
GIIC 8/00 (2006.01)
U.S. Cl. 326/39; 711/103,365/185.33;

365/189.08
Field of Classification Search 326/38-41
See application file for complete search history.

(51)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,548,228 A 8, 1996 Madurawe
5,640,107 A 6, 1997 Kruse
5,689,516 A 11/1997 Macket al.
5,696,455 A 12/1997 Madurawe
5,794,033 A * 8/1998 Aldebert et al. T13/100
6,038,185 A 3/2000 Ng
6,044,025 A 3/2000 Lawman
6,049,222 A 4/2000 Lawman
6,150,837 A 11/2000 Beal et al.
6,304,099 B1 10/2001 Tang et al.
6,356,107 B1 3/2002 Tang et al.

6.467,009 B1 10/2002 Winegarden et al.
6,483,342 B2 11/2002 Britton et al.
6,507,214 B1 1/2003 Snyder
6,538,468 B1 3/2003 Moore
6,564,285 B1 5, 2003 Mills

6,704,850 B1 3/2004 Reynolds
6,714,041 B1 3/2004 Darling et al.
6,721,840 B1 4/2004 Allegrucci
6,732,263 B1 5/2004 May et al.
6,772,230 B2 8, 2004 Chen et al.

(Continued)
OTHER PUBLICATIONS

Office Action mailed Sep. 13, 2007 in U.S. Appl. No. 1 1/446,548 (14
pages).

(Continued)

Primary Examiner Vibol Tan
(74) Attorney, Agent, or Firm Haynes and Boone, LLP

(57) ABSTRACT

Systems and methods are disclosed herein to provide an
improved approach to the configuration of integrated circuits
Such as programmable logic devices (PLDS). In one example,
a method of operating a PLD includes receiving a configura
tion data bitstream at a slave serial peripheral interface (SPI)
port of a PLD from a master SPI port of a first external device.
The method also includes passing the configuration data bit
stream through the PLD from the slave SPI port of the PLD to
a master SPI port of the PLD. The method further includes
providing the configuration data bitstream from the master
SPI port of the PLD to a slave SPI port of a second external
device.

23 Claims, 11 Drawing Sheets

528 DO

SP R
Device

4 CB
Signals

52

US 7,570,078 B1
Page 2

U.S. PATENT DOCUMENTS

6,774,668 B1 8/2004 Wirtz, II
6,785,165 B2 8/2004 Kawahara
6,828,823 B1 12/2004 Tsui et al.
6,851,047 B1 2/2005 Fox et al.
6,873,177 B1 3/2005 Wennekamp et al.
6,903,574 B2 6, 2005 Chen et al.
7,078,929 B1* 7/2006 Draper et al. 326, 16
7,081,771 B2 7/2006 Agrawal et al.
7,088,132 B1 8/2006 Tang et al.
7,095,247 B1 8/2006 Tang et al.
7, 190,190 B1 3/2007 Camarota et al.

2004/006 1147 A1
2004, OO64622 A1
2004/0176857 A1*
2005. O189962 A1

4/2004 Fujita
4/2004 Smith
9/2004 Tsunedomi et al. 7OO/2
9/2005 Agrawal et al.

2006/01 19384 A1 6/2006 Camarota et al.
2006/0143366 A1* 6/2006 Yang et al. T11 103
2006/0239104 A1* 10, 2006 Lee et al. 365,230.01
2007/0182445 A1 8, 2007 Chen et al. 326/39

OTHER PUBLICATIONS

Response to Office Action submitted Dec. 11, 2007 in U.S. Appl. No.
1 1/446,548 (11 pages).
Notice of Allowance mailed Jan. 30, 2008 in U.S. Appl. No.
1 1/446,548 (6 pages).
U.S. Appl. No. 1 1/397.985, Fontana.
U.S. Appl. No. 1 1/398.437, Tang.
U.S. Appl. No. 1 1/446,309, Tang.
U.S. Appl. No. 1 1/293.941, Tang.
U.S. Appl. No. 1 1/350,436, Tang et al.
U.S. Appl. No. 1 1/346,817, Chen et al.
U.S. Appl. No. 1 1/446,548, Tang et al.
AT17LV(A) Series FPGA Configuration Memory, Ref. 0437K
CNFG-May 2003, pp. 1-18, ATMEL Corporation.
FPGA Configuration EEPROM Memory, 2322F-CNFG, Jun. 2006,
pp. 1-18, ATMEL Corporation.

FPGA Configuration EEPROM Memory, 2321 E-CNFG, Jun. 2003,
pp. 1-24. ATMEL Corporation.
Lattice Semiconductor Corporation, MachXO Family Data Sheet,
Version 02.1, May 2006, pp. 1-93.
Altera.R. Section III User Flash Memory, Max II Device Handbook,
vol. 1, 2005, 80 pages.
Actel ProAsic(R) 3 Flash Family FPGAs with Optional Soft ARMR)
Support, Advanced v0.6, Apr. 2006, 208 pages.
Altera Corporation, Cyclone Device Handbook, vol. 1, 13. Config
uring Cyclone FPGAs, Aug. 2005, 50 pages.
Lattice Semiconductor Corporation, Low-Cost FPGA Configuration
Via Industry-Standard SPI Serial Flash, A Lattice Semiconductor
White Paper, Jun. 2004, 13 pages.
Xilinx R, Configuring Spartan-3E Xininx FPGAs with SPI Flash
Memories, Arthur Khu, Jan. 3, 2006, 16 pages.
ST Microelectronics, M25P80, 8 Mbit, Low Voltage, Serial Flash
Memory With 40 MHZ SPI Bus Interface, Aug. 2004, 41 pages.
Lattice, Semiconductor Corporation, ispXP Configuration Usage
Guidelines, Technical Notes TN 1026, Aug. 2002, pp. 1-18.
Lattice Semiconductor Corporation, ispXPGATM Family, Data
Sheet, Jul. 2005, 115 pages.
Lattice Semiconductor Corporation, ispXPGATM Family, Prelimi
nary Data Sheet, Dec. 2002, pp. 1-90.
Lattice Semiconductor Corporation, LatticeXP Family Data Sheet,
Version 01.0, Feb. 2005, 77 pages.
Altera, MAXII Device Handbook.http://www.altera.com, M115V1
1.7, 330 pages.
Xilinx. On the Fly Reconfiguration with CoolRunner-II CPLDs,
Applicaton Note: CoolRunner-II CPLDs, May 15, 2003, pp. 1-10.
Actel Corporation, “Pro ASIC Plus Flash Family FPGAs'. v.5.3 May
2006, 173 pages.
Actel Corporation, Pro ASIC3 Flash Family FPGAs, ARM7 Soft IP
Supportin Pro ASIC3E ARM7-Ready Devices, Oct. 2005, 166 pages.
Serial Peripheral Interface Bus Wikipedia, the free enclyclopedia,
Jan. 6, 2007, p. 1-7.

* cited by examiner

US 7,570,078 B1 Sheet 1 of 11 Aug. 4, 2009 U.S. Patent

§§§§§§§2ì ÑÑØNNNNNNØNN W2((
2

2 22222222 N N N
S N

FIG. 1

U.S. Patent Aug. 4, 2009 Sheet 2 of 11 US 7,570,078 B1

100

H H H H H tilti |
H
it; it; it;

-n.

112(1)

112(2)
N-1

FIG 2

U.S. Patent Aug. 4, 2009 Sheet 3 of 11 US 7,570,078 B1

100

SPI PORT
MASTER
SP

Flosh
(Non-Volatile) 114

- SRAM Configuration
306

FPGA Logic

JTAG Port

FIG. 3

US 7,570,078 B1 Sheet 4 of 11 Aug. 4, 2009 U.S. Patent

|dS HAWTS

7 '0IH

r--------~~===------------------90DdS ÁJOuJ0W
l

US 7,570,078 B1 Sheet 5 of 11 Aug. 4, 2009 U.S. Patent

(1)2||

|

U.S. Patent Aug. 4, 2009 Sheet 6 of 11 US 7,570,078 B1

SSSS:2
222222222
2

222222222
22222222

222222222
222222222%

U.S. Patent Aug. 4, 2009 Sheet 7 of 11 US 7,570,078 B1

114

Control Lodic

FIG.

U.S. Patent Aug. 4, 2009 Sheet 8 of 11 US 7,570,078 B1

600

112(3) 112(1)

524

(Non-Volatile)

FPGA Logic

JTAG Port

FIG. 8

US 7,570,078 B1 Sheet 9 of 11 Aug. 4, 2009 U.S. Patent

6 '0IH

US 7,570,078 B1 Sheet 10 of 11 Aug. 4, 2009 U.S. Patent

10) Sgzç

U.S. Patent Aug. 4, 2009 Sheet 11 of 11 US 7,570,078 B1

534 502 600

524

-
Slove SPI Port 525 l /510/511

FIG 11

Store both the boot 600
up code for CPU and
the configuration
potterns for the FPGA.

FPGA

11 2(3)
Slove 508 CSSPIN

SSP CFGO
Interface CFG i.

CFC2 CCK

FIG. 12

US 7,570,078 B1
1.

PROGRAMMABLE LOGIC DEVICE
PROVIDING SERAL PERPHERAL

INTERFACES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of and claims the
benefit of U.S. patent application Ser. No. 1 1/446,548 filed on
Jun. 2, 2006 now U.S. Pat. No. 7,378,873, which is incorpo
rated herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to integrated cir
cuits and, more particularly, to configuration of program
mable logic devices.

BACKGROUND

Programmable logic devices (PLDs), such as field pro
grammable gate arrays (FPGAs) or complex programmable
logic devices (CPLDs), may be programmed with configura
tion data to provide various user-defined features. For
example, it is often desirable for users to program PLDs with
particular input/output (I/O) functionality to Support commu
nication and interfacing of the PLDs with other devices as
may be desired. As a result, significant numbers of user
programmable I/O pins may be needed to Support such user
defined functionality in particular applications.

Unfortunately, certain conventional PLDS may use large
numbers of I/O pins to implement manufacturer-specific pro
gramming interfaces to Support the programming of the PLDS
with configuration data from external computing devices. For
example, such programming interfaces may be used to pro
gram memory of a PLD with configuration data to Support
non-volatile storage and internal transfer to the PLD’s con
figuration memory.

Nevertheless, such programming interfaces often require
the use of dedicated I/O pins. Because of the limited number
of pins available on a given PLD, the use of dedicated pro
gramming interface pins can significantly reduce the number
of I/O pins available for user-defined operation. Moreover,
existing PLDS that may support more simplified program
ming interfaces with lower pin counts typically do not pro
vide convenient ways to selectively boot from various avail
able sources of configuration data, or they require use of
interfaces that may not conveniently interface with external
non-volatile memories (e.g., a JTAG interface). Accordingly,
there is a need for an improved approach to the configuration
of PLDs that, for example, provides users with ample I/O pins
and permits configuration of the PLD to be performed
through a convenient programming interface.

SUMMARY

In accordance with one embodiment of the present inven
tion, a method of operating a programmable logic device
(PLD) includes receiving a configuration data bitstream at a
slave serial peripheral interface (SPI) port of a PLD from a
master SPI port of a first external device; passing the configu
ration data bitstream through the PLD from the slave SPI port
of the PLD to a master SPI port of the PLD; and providing the
configuration data bitstream from the master SPI port of the
PLD to a slave SPI port of a second external device.

In accordance with another embodiment of the present
invention, a programmable logic device (PLD) includes a

10

15

25

30

35

40

45

50

55

60

65

2
slave serial peripheral interface (SPI) port adapted to receive
a configuration data bitstream from a master SPI port of a first
external device; an interface block adapted to pass the con
figuration data bitstream through the PLD; and a master SPI
port adapted to provide the configuration data bitstream from
the PLD to a slave SPI port of a second external device.

In accordance with another embodiment of the present
invention, a method of configuring a programmable logic
device (PLD) includes receiving boot code at a master serial
peripheral interface (SPI) port of a first external device from
a slave SPI port of a second external device; booting the first
external device using the boot code; receiving configuration
data at the master SPI port of the first external device from the
slave SPI port of the second external device; maintaining the
configuration data in a memory of the first external device;
and passing the configuration data from the master SPI port of
the first external device to a slave SPI port of the PLD to
facilitate programming a memory of the PLD with the con
figuration data to configure the PLD for its intended function,
wherein the slave SPI port of the PLD is connected with the
master SPI port of the first external device and is also con
nected with the slave SPI port of the second external device.

In accordance with another embodiment of the present
invention, a programmable logic device system includes a
memory device comprising a slave serial peripheral interface
(SPI) port, wherein the memory device is adapted to store
configuration data and boot code; a programmable logic
device (PLD) comprising a slave SPI port connected with the
slave SPI port of the memory device, the PLD further com
prising a memory adapted to be programmed with the con
figuration data to configure the PLD for its intended function;
and a data processing device comprising a master SPI port
connected with the slave SPI port of the memory device and
the slave port of the PLD, wherein the data processing device
is adapted to receive the boot code from the memory device
through the master SPI port and boot using the received boot
code, wherein the data processing device is further adapted to
receive the configuration data from the memory device
through the master SPI port and pass the configuration data
from the master SPI port to the slave SPI port of the PLD.

In accordance with another embodiment of the present
invention, a computer-readable medium on which is stored a
computer program for performing a method includes receiv
ing configuration data at a master serial peripheral interface
(SPI) port of a first external device from a slave SPI port of a
second external device; maintaining the configuration data in
a memory of the first external device; and passing the con
figuration data from the master SPI port of the first external
device to a slave SPI port of a programmable logic device
(PLD) to facilitate programming a memory of the PLD with
the configuration data to configure the PLD for its intended
function, wherein the slave SPI port of the PLD is connected
with the master SPI port of the first external device and is also
connected with the slave SPI port of the second external
device.

The scope of the invention is defined by the claims, which
are incorporated into this section by reference. A more com
plete understanding of embodiments of the present invention
will be afforded to those skilled in the art, as well as a real
ization of additional advantages thereof, by a consideration of
the following detailed description of one or more embodi

US 7,570,078 B1
3

ments. Reference will be made to the appended sheets of
drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 2 shows a block diagram illustrating exemplary
implementation details for a non-volatile memory and con
figuration memory of the programmable logic device of FIG.
1 in accordance with an embodiment of the present invention.

FIG. 3 shows a block diagram illustrating programming
options of the programmable logic device of FIG. 1 in accor
dance with an embodiment of the present invention.

FIG. 4 shows a block diagram illustrating exemplary
implementation details of data ports of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIG. 5 shows a block diagram illustrating further exem
plary implementation details of data ports of the program
mable logic device of FIG. 1 in accordance with an embodi
ment of the present invention.

FIG. 6 shows a block diagram illustrating another exem
plary programmable logic device in accordance with an
embodiment of the present invention.

FIG. 7 shows a block diagram illustrating exemplary
implementation details for configuration memory of the pro
grammable logic device of FIG. 6 in accordance with an
embodiment of the present invention.

FIG. 8 shows a block diagram illustrating programming
options of the programmable logic device of FIG. 6 in accor
dance with an embodiment of the present invention.

FIG. 9 shows a block diagram illustrating exemplary
implementation details of data ports of the programmable
logic device of FIG. 6 in accordance with an embodiment of
the present invention.

FIG. 10 shows a block diagram illustrating further exem
plary implementation details of data ports of the program
mable logic device of FIG. 6 in accordance with an embodi
ment of the present invention.

FIG. 11 shows a block diagram illustrating a program
mable logic device system inaccordance with an embodiment
of the present invention.

FIG. 12 shows a block diagram illustrating another pro
grammable logic device system in accordance with an
embodiment of the present invention.

Embodiments of the present invention and their advantages
are best understood by referring to the detailed description
that follows. It should be appreciated that like reference
numerals are used to identify like elements illustrated in one
or more of the figures.

DETAILED DESCRIPTION

The various techniques disclosed herein are applicable to a
wide variety of integrated circuits and applications. As an
exemplary implementation, a programmable logic device
(PLD) will be utilized to illustrate the techniques in accor
dance with one or more embodiments of the present inven
tion. However, it should be understood that this is not limiting
and that the techniques disclosed herein may be implemented
as desired, in accordance with one or more embodiments of
the present invention, within various types of integrated cir
cuits.

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device (PLD) 100 in accordance with an

10

15

25

30

35

40

45

50

55

60

65

4
embodiment of the present invention. PLD 100 (e.g., an
FPGA) includes I/O blocks 102 and programmable logic
blocks 104. I/O blocks 102 provide I/O functionality (e.g., to
Support one or more I/O and/or memory interface standards)
for PLD 100. Programmable logic blocks 104 (e.g., also
referred to in the art as configurable logic blocks or logic array
blocks) provide logic functionality for PLD 100, such as for
example LUT-based logic typically associated with FPGAs.
PLD 100 may also include reprogrammable non-volatile

memory 106 (e.g., blocks of EEPROM or flash memory),
volatile memory 108 (e.g., block SRAM), clock-related cir
cuitry 110 (e.g., PLL circuits), one or more data ports 112,
configuration memory 114, and/or an interconnect 116. It
should be understood that the number and placement of the
various elements, such as I/O blocks 102, logic blocks 104,
non-volatile memory 106, volatile memory 108, clock-re
lated circuitry 110, data port 112, configuration memory 114,
and interconnect 116, is not limiting and may depend upon
the desired application. Furthermore, it should be understood
that the elements are illustrated in block form for clarity and
that certain elements, such as configuration memory 114 and
interconnect 116, would typically be distributed throughout
PLD 100, such as for example in and between logic blocks
104, to perform their conventional functions (e.g., storing
configuration data that configures PLD 100 and providing
routing resources, respectively).

Data ports 112 are also provided which may be used for
programming PLD 100. For example, data port 112(1) may
represent a serial peripheral interface (SPI) port. As under
stood by those skilled in the art, SPI is a serial interface
standard established by Motorola Corporation of Schaum
burg, Ill. Data port 112(2) may represent, for example, a joint
test action group (JTAG) port employing standards Such as
Institute of Electrical and Electronics Engineers (IEEE)
1149.1 and/or IEEE 1532 standards. Data ports 112(1) and
112(2) are not both required, but one or the other or both may
be included to receive configuration data and commands.
PLD 100 may also include additional data ports such as, for
example, a CPU port.

Non-volatile memory 106 may be used to store configura
tion data within PLD 100 for transfer to configuration
memory 114 of PLD 100 upon power up or during reconfigu
ration of PLD 100. This may drastically reduce the time to
reconfigure PLD 100 relative to an external bitstream (e.g.,
reduce the time from seconds to microseconds for loading of
configuration data into configuration memory 114).

Non-volatile memory 106 may also be used to provide
background programming and/or storage for PLD 100 in
accordance with some embodiments of the present invention.
For example, for storage functionality, non-volatile memory
106 may be used as non-volatile storage for a user or manu
facturer to store various test data, System management infor
mation, manufacturing control information, failure statistics
information for board level diagnostics, security bits, identi
fication codes, identification code selection bits (e.g., one or
more custom ID fuses), and/or other information as desired.

For example, for background programming. PLD 100 may
remain in user mode, based on the configuration data stored in
configuration memory 114 within PLD 100, while non-vola
tile memory 106 is programmed with new configuration data
(e.g., a new user defined pattern). Once the new configuration
data is stored in non-volatile memory 106, this data can be
transferred from non-volatile memory 106 to configuration
memory 114 to reconfigure PLD 100, a process sometimes
referred to as refresh. The refresh process can be initiated by
a signal or instruction provided to one of data ports 112 (e.g.,

US 7,570,078 B1
5

sending an SPI-compliant instruction via data port 112(1) or
providing a JTAG refresh instruction via data port 112(2)).
As a specific example, FIG. 2 shows a block diagram

illustrating additional exemplary implementation details for
PLD 100 of FIG. 1 in accordance with an embodiment of the
present invention. As illustrated, PLD 100 includes configu
ration memory 114, non-volatile memory 106 (e.g., flash
memory), and data ports 112 previously described in FIG. 1,
and further includes control logic 202.

Configuration memory 114 (e.g., volatile SRAM cells or
other types of Volatile or non-volatile memory) are used in a
conventional manner to store configuration data, which deter
mines the user defined functions of PLD 100 (e.g., determines
programmable functions of I/O blocks 102, logic blocks 104,
and interconnect 116). Control logic 202 controls the internal
transfer (for example, a massively parallel data transfer) of
the configuration data from non-volatile memory 106 to con
figuration memory 114, as well as from data ports 112 to
non-volatile memory 106 and configuration memory 114, as
would be understood by one skilled in the art. Control logic
202 may represent core logic of PLD 100 such as FPGA
based logic circuits (e.g., lookup tables) or dedicated circuits.

It should be understood that flash memory represents an
exemplary type of memory for non-volatile memory 106
which may be further implemented with appropriate security
features. However, other types of non-volatile memory (e.g.,
EECMOS) that can be reprogrammed once or repeatedly may
be substituted for non-volatile memory 106. Furthermore for
example in accordance with one or more embodiments of the
present invention, either non-volatile memory 106 or con
figuration memory 114 may be programmed (i.e., receive and
store information in its memory) to store configuration data
for PLD 100, but the device functionality of PLD 100 is
determined by the information stored in configuration
memory 114. Thus, PLD 100 may be configured (including
reconfiguration or partial reconfiguration), for example,
when information is programmed into configuration memory
114.

It should also be understood, in accordance with one or
more embodiments of the present invention, that non-volatile
memory 106 and configuration memory 114 may each be
programmed (including reprogrammed), for example, via
data port 112(1) or data port 112(2), depending upon the
desired application or design requirements. Further details
regarding programming may be found in U.S. Pat. No. 6,828,
823 and U.S. Pat. No. 7,081,771, which are incorporated
herein by reference.

FIG. 3 shows a block diagram illustrating programming
options of PLD 100 in accordance with an embodiment of the
present invention. As illustrated, PLD 100 includes configu
ration memory 114, non-volatile memory 106 (e.g., flash
memory), and data ports 112 previously described in FIGS. 1
and 2. PLD 100 further includes FPGA logic 306 which
represents logic blocks 104 and other configurable aspects of
PLD 1 OO.

As also previously described in FIG. 1, data port 112(1)
may be implemented as an SPI port and data port 112(2) may
be implemented as a JTAG port. In this regard, it will be
appreciated that data port 112(1) may operate in a master
mode (i.e., sending a synchronizing clock signal to an exter
nal SPI-compatible device) or in a slave mode (i.e., receiving
a synchronizing clock signal from an external SPI-compat
ible device). Accordingly, PLD 100 further includes master
and slave SPI interface blocks 302 and 304, respectively,
which may be implemented by control logic 202 of FIG. 2 to

10

15

25

30

35

40

45

50

55

60

65

6
support data port 112(1) implemented as an SPI port. Control
logic 202 may further support the implementation of data port
112(2) as a JTAG port.

In one embodiment, SPI port 112(1), master SPI interface
block302, and/or slave SPI interface block304 may be imple
mented by one or more dedicated circuits. In another embodi
ment, SPI port 112(1), master SPI interface block 302, and/or
slave SPI interface block 304 may be implemented by con
figurable logic (for example, programmable logic blocks 104)
of PLD 100 to provide an SPI port.
As shown in FIG.3, nonvolatile memory 106 and configu

ration memory 114 may each be programmed via data port
112(1) and data port 112(2). In particular, data port 112(1)
(e.g., SPI port) may program configuration memory 114
through master SPI interface block 302, and may program
and read back non-volatile memory 106 or configuration
memory 114 through slave SPI interface block 304. Slave SPI
interface block 304 may also be used to cause configuration
data stored in non-volatile memory 106 to be copied into
configuration memory 114 in response to a refresh command.
Data port 112(2) (e.g., JTAG port) may program non-volatile
memory 106 or configuration memory 114.

In general, programming non-volatile memory 106 may
take longer (e.g., seconds) than programming configuration
memory 114 (e.g., milliseconds). However, after non-volatile
memory 106 has been programmed with Suitable configura
tion data, non-volatile memory 106 can be employed to pro
gram configuration memory 114 much faster (e.g., microsec
onds) than would generally be possible via data ports 112 to
provide essentially an instant-on capability (e.g., program
ming configuration memory 114 or logic blocks 104 approxi
mately 200 microseconds after power-up). Non-volatile
memory 106 may also be programmed while PLD 100 is
operating (e.g., background or transparent operation), with
configuration data from non-volatile memory 106 being
transferred to configuration memory 114 when desired to
reconfigure PLD 100.
PLD 100 offers certain advantages over various conven

tional PLDs which may lack non-volatile memory 106, con
figuration memory 114, and SPI interface support through
data port 112(1). For example, by incorporating both non
volatile memory 106 and volatile configuration memory 114,
PLD 100 can store configuration data in non-volatile memory
106 and not need external configuration devices that are
required for SRAM only-based PLDs, while configuration
memory 114 allows for infinite reconfigurability of PLD 100
that is generally not possible with non-volatile memory only
based PLDs (e.g., flash or EECMOS memory). In addition,
both non-volatile memory 106 and configuration memory
114 (e.g., volatile memory) may be upgraded (i.e., pro
grammed) via data ports 112 having low pin counts (e.g., an
SPI port and/or a JTAG port). This contrasts with conven
tional non-volatile memory-based PLDs which may not allow
programming of both volatile and non-volatile memories
through such ports and may consequently necessitate pro
gramming through a manufacturer-specific programming
port requiring a large number of dedicated I/O pins.

Accordingly, in accordance with one or more embodi
ments of the present invention, PLD 100 provides an essen
tially instant-on, remotely upgradeable, non-volatile, and
dynamically reconfigurable device (e.g., integrated circuit)
with the ability to program non-volatile memory 106 or con
figuration memory 114 directly, for example, viaan SPI inter
face or a JTAG interface. Moreover, it will be appreciated that
the implementation of an SPI port in particular can facilitate
convenient interfacing with external SPI-compatible devices,
Such as non-volatile memories.

US 7,570,078 B1
7

FIG. 4 shows a block diagram illustrating exemplary
implementation details of data ports 112 of PLD 100 in accor
dance with an embodiment of the present invention. In par
ticular, data port 112(1) (e.g., SPI port) and data port 112(2)
(e.g., JTAG port) are provided, which are used to provide
external data (i.e., information, which may include control
signals, configuration data, Security bits, or other types of
data) to non-volatile memory 106 (labeled Flash Memory
Space) and configuration memory 114 (labeled SRAM
Memory Space). As also shown in FIG. 4, multiple tech
niques are provided to program and configure the memory
spaces of PLD 100.

For example, non-volatile memory 106 and configuration
memory 114 may be programmed via data port 112(1). As
previously discussed, data port 112(1) may be implemented
as a SPI port supported by master SPI interface block 302 and
slave SPI interface block 304. When data port 112(1) is oper
ated in master mode, master SPI interface block 302 can be
used to interface data port 112(1) with configuration memory
114 for programming. When data port 112(1) is operated in
slave mode, slave SPI interface block 304 can be used to
interface data port 112(1) for programming directly with
non-volatile memory 106 or configuration memory 114. In
this mode, slave SPI interface block 304 can also program
non-volatile memory 106 through a background mode
(BKGND) 402 for programming while PLD 100 continues to
perform its system logic functions that are controlled or con
figured by configuration memory 114 (i.e., programming of
non-volatile memory 106 is transparent to the device's logic
operations).

Non-volatile memory 106 and configuration memory 114
may also be programmed via data port 112(2). For example,
data port 112(2) (e.g. a JTAG port) may be implemented as an
IEEE 1149.1 compliant test access port (TAP) and used to
program non-volatile memory 106 or configuration memory
114 to allow in-system programmability or programming
through a device-programmer system. Appropriate program
ming algorithms and circuitry may be designed to be fully
IEEE 1532 compliant to allow programming via an IEEE
1532 programming mode 404, which allows for universal
Support from general automated test equipment (ATE) and
other types of test systems. Data port 112(2) may also be used
to program non-volatile memory 106 in background mode
402.

After non-volatile memory 106 or configuration memory
114 is programmed, a standard Verify cycle may be per
formed by either of data ports 112. For example, background
mode 402 or IEEE 1532 programming mode 404 may be used
to read back the configuration data stored in non-volatile
memory 106 or configuration memory 114 to ensure or verify
that the configuration data has been properly loaded.

FIG. 5 shows a block diagram illustrating further exem
plary implementation details of data ports 112 of PLD 100 in
accordance with an embodiment of the present invention. As
illustrated, data port 112(1) may be implemented to supporta
plurality of pins 522 (labeled CSSPIN, CCLK, SOSPI,
CSSPISN, and SISPI) for interfacing PLD 100 with one or
more external devices, such as an external non-volatile
memory 524 (e.g., an SPI serial flash memory) and a CPU or
master SPI device 534. In this regard, it will be appreciated
that various pins 522 of data port 112(1) may be connected
with conventional SPI pins 526 of external non-volatile
memory 524 or CPU or master SPI device 534. In addition,
data port 112(2) may be implemented to support a plurality of
pins 512 (labeled TCK, TDI, TMS, and TDO) for interfacing
PLD 100 with external devices supporting JTAG interfaces.

5

10

15

25

30

35

40

45

50

55

60

65

8
As further illustrated in FIG. 5, the CCLK and SOSPI pins

are connected with additional clock/logic circuitry 532, and
the CCLK pin is further connected with master SPI interface
block 302. The CSSPISN pin is also connected with master
SPI interface block302 and may optionally be used to disable
master SPI interface block 302 when data port 112(1) is
operated in slave mode in order to avoid contention between
master SPI interface block 302 and slave SPI interface block
304.

A subset 530 of pins 522 may connect with slave SPI
interface block 304 through a multiplexer 516. Slave SPI
interface block 304 is also connected with a common inter
face block (CIB) 528 of PLD 100 to facilitate the interfacing
of pins 530 with non-volatile memory 106 and/or configura
tion memory 114. As illustrated, data port 112(2) may also
connect with CIB528 to facilitate the interfacing of pins 512
with non-volatile memory 106 and/or configuration memory
114.

A CIB select fuse 514 may be programmed to select
between signals provided at pins 530 and a set of common
interface block (CIB) signals 518. For example, in one
embodiment, if CIB select fuse 514 corresponds to a first
logic State (e.g., an unprogrammed State), multiplexer 516
will be switched to provide slave SPI interface block304 with
signals provided at pins 530 to provide an SPI port operating
in slave mode.

If CIB select fuse 514 corresponds to a second logic state
(e.g., a programmed state), multiplexer 516 will be switched
to provide slave SPI interface block 304 with CIB signals 518
which may control SPI interface block 304 in a manner deter
mined by user-defined logic 520. Advantageously, by operat
ing slave SPI interface block 304 through CIB signals 518.
user-defined logic 520 may utilize slave SPI interface block
304 to program, read, and refresh non-volatile memory 106
and/or configuration memory 114.
As shown below in Table 1, the specific behavior of pins

522 can depend upon whether data port 112(1) operates in
master mode or slave mode.

TABLE 1

Data
Port
112(1)
(SPI
Inter- Pins Behavior

face) CCLK CSSPIN CSSPISN. SISPI SOSPI Applications

Master Output Output User I/O Output Input Clock data
Out of SPI
device to
boot up
FPGA

Slave Input User Input Input Output Access
IO SRAM fuses

and Flash
fuses in
FPGA

For example, when data port 112(1) is operated in master
mode, configuration data can be received from external non
Volatile memory 524 and programmed into configuration
memory 114. In this mode, the CCLK, CSSPIN, and SISPI
pins operate as outputs to provide clock, master chip select,
and data output signals, respectively to external non-volatile
memory 524. In addition, the SOSPI pin operates as a data
input to receive data input signals (e.g., configuration data)

US 7,570,078 B1
9

from external non-volatile memory 524. As also shown in
Table 1, the CSSPISN pin remains available to be used as a
user I/O pin by PLD 100.
When data port 112(1) is operated in slave mode, configu

ration data can be received from external non-volatile
memory 524 or CPU or master SPI device 534 to be pro
grammed into configuration memory 114 or non-volatile
memory 106 as previously described herein. In this mode, the
CCLK, CSSPISN, and SISPI pins operate as inputs to receive
clock, slave chip select, and data input signals (i.e., configu
ration data), respectively. In addition, the SOSPI pin provides
data output signals. As also indicated in Table 1, the CSSPIN
pin remains available to be used as a user I/O pin by PLD 100
while in slave mode.
PLD 100 further includes a PROGRAM pin 502, a DONE

pin 504, and an INIT pin 506, each of which is connected with
master SPI interface block 302. PROGRAM pin 502 can be
used to trigger master SPI interface block 302 to reboot PLD
100 and therefore cause configuration data to be loaded from
external non-volatile memory 524 into configuration memory
114 or from non-volatile memory 106 into configuration
memory 114. DONE pin 504 indicates whether a refresh
operation (i.e., a loading of configuration data into configu
ration memory 114) has been performed. INIT pin 506 indi
cates whether such a refresh operation is successful.

Advantageously, PLD 100 can be configured to boot from
non-volatile memory 106 or external non-volatile memory
524 interfaced with data port 112(1). For example, in one
embodiment, PLD 100 may further include a configuration
pin 508 (labeled CFGO) which may be used to determine the
response of PLD 100 to a power-on reset operation. For
example, if configuration pin 508 is set to a logical high value,
then master SPI block 302 may be disabled and configuration
data may be loaded from non-volatile memory 106 into con
figuration memory 114 when PLD 100 is powered on. If
configuration pin 508 is set to a logical low value, then con
figuration data may be loaded into configuration memory 114
through master SPI interface block 302 or slave SPI interface
block 304 of data port 112(1), or through data port 112(2)
(e.g., JTAG port) when PLD 100 is powered on.

In another embodiment, PLD 100 may further include
another configuration pin 510 (labeled CFG1) which, incom
bination with configuration pin 508, may determine the par
ticular boot sequence performed by PLD 100. In one embodi
ment, configuration pin 508 may be implemented as a
dedicated pin and configuration pin 510 may be implemented
as a shared pin (i.e., may be recovered as a user I/Opin). Table
2 below identifies the corresponding boot modes of PLD 100
as determined by exemplary signal values applied to configu
ration pins 508 and 510.

TABLE 2

Configuration Mode First Boot Second Boot CFGO CFG1

Dual Boot Mode SPI Internal Flash O O
Internal Flash SPI O 1

Self Download Internal Flash NA 1 X
Mode (SDM)
1149.1 TAP NA NA X X

For example, if both of configuration pins 508 and 510 are
set to logical low values when PLD 100 is powered on (i.e.,
when a power-on-reset operation is performed), PLD 100
may first attempt to boot from external non-volatile memory
524 through data port 112(1) and, if the first boot attempt is
unsuccessful, then PLD 100 may attempt to boot from non
volatile memory 106. It will be appreciated from Table 2

10

15

25

30

35

40

45

50

55

60

65

10
above that this order may be reversed if configuration pin 510
is set to a logical high value. In addition, a single attempt to
boot from non-volatile memory 106 will be made if configu
ration pin 508 is set to a logical high value. As also set forth in
Table 2, the values of configuration pins 508 and 510 do not
bear upon the booting of PLD 100 from data port 112(2) when
under JTAG control.

In accordance with additional embodiments of the present
invention, a PLD may be implemented a plurality of SPI ports
which may be used to facilitate additional programming and
readback features. For example, in one embodiment, a master
SPI port of the PLD may be configured to program an external
memory with data received through a slave SPI port of the
PLD. In another embodiment, the slave SPI port of a PLD
may be used to program or refresh the PLD with configuration
data and/or read configuration data from the PLD.

FIG. 6 shows a block diagram illustrating an exemplary
PLD 600 in accordance with an embodiment of the present
invention. It will be appreciated that PLD 600 may be imple
mented in a similar fashion as PLD 100 of FIG. 1, with
various aspects of PLD 100 also included in PLD 600. As
shown in FIG. 6, PLD 600 also includes an additional data
port 112(3) which may be implemented, for example, as an
SPI port. In this regard, data ports 112(1) and 112(3) may be
implemented as master and slave SPI ports, respectively.
Optionally, PLD 600 may be implemented without non-vola
tile memory 106.

FIG. 7 shows a block diagram illustrating additional exem
plary implementation details for PLD 600 of FIG. 6 in accor
dance with an embodiment of the present invention. Similar
to PLD 100, PLD 600 includes configuration memory 114,
control logic 202, and data ports 112(1) and 112(2). PLD 600
also includes data port 112(3). Optionally, PLD 600 does not
include non-volatile memory 106 of PLD 100. Control logic
202 of FIG. 7 controls the transfer of the configuration data
from data ports 112 to configuration memory 114, as would
be understood by one skilled in the art. For example, configu
ration memory 114 may be programmed (including repro
grammed) via data ports 112(1), 112(2), or 112(3), depending
upon the desired application or design requirements.

FIG. 8 shows a block diagram illustrating programming
options of PLD 600 in accordance with an embodiment of the
present invention. It will be appreciated that the embodiment
of PLD 600 shown in FIG.8 may be implemented in a similar
fashion as PLD 100 of FIG. 3, with various aspects of PLD
100 also included in PLD 600. PLD 600 of FIG. 6 may
additionally be implemented with data port 112(3) and may
be connected with external non-volatile memory 524 through
any of data ports 112. Master and slave SPI interface blocks
302 and 304 may support data ports 112(1) and 112(3),
respectively, any of which may be implemented by dedicated
circuits and/or configurable logic (for example, program
mable logic blocks 104).
As shown in FIG. 8, configuration memory 114 may be

programmed via any of data ports 112. In particular, data port
112(1) (e.g., master SPI port) may program configuration
memory 114 through master SPI interface block 302. Data
port 112(3) (e.g., slave SPI port) may program configuration
memory 114 through slave SPI interface block 304. In addi
tion, data port 112(2) (e.g., JTAG port) may program configu
ration memory 114.

FIG. 9 shows a block diagram illustrating exemplary
implementation details of data ports 112(1), 112(2), and 112
(3) of PLD 600 in accordance with an embodiment of the
present invention. It will be appreciated that the embodiment
of PLD 600 shown in FIG.9 may be implemented in a similar
fashion as PLD 100 of FIG. 4, with various aspects of PLD

US 7,570,078 B1
11

100 also included in PLD 600. PLD 600 of FIG. 6 additionally
includes data port 112(3). FIG. 9 further illustrates that data
ports 112(1) and 112(3) are supported by master and slave
SPI interface blocks 302 and 304, respectively as previously
described with regard to FIG. 8.

Data ports 112(1) and 112(3) may be connected with exter
nal non-volatile memory 524. In this regard, data ports 112(1)
and 112(3) may provide external data (i.e., information,
which may include control signals, configuration data, Secu
rity bits, or other types of data) from external non-volatile
memory 524 to configuration memory 114 (labeled SRAM
Memory Space). As also shown in FIG. 9, multiple tech
niques are provided to program and configure the memory
space of PLD 600.

FIG. 10 shows a block diagram illustrating further exem
plary implementation details of data ports 112(1), 112(2), and
112(3) of PLD 600 in accordance with an embodiment of the
present invention. It will be appreciated that the embodiment
of PLD 600 shown in FIG. 10 may be implemented in a
similar fashion as PLD 100 of FIG. 5, with various aspects of
PLD 100 shown in FIG. 5 also included in PLD 600. How
ever, in contrast to PLD 100 of FIG.5, PLD 600 of FIG.6 may
be implemented with additional data port 112(3).

In the embodiment of FIG. 10, data port 112(1) is imple
mented as a master SPI port 112(1) connected with external
non-volatile memory 524 through pins 522. Also in this
embodiment, data port 112(3) is implemented as a slave SPI
port connected with master SPI device 534 (for example, a
data processing device Such as a CPU or other appropriate
device) through pins 523. In various embodiments, master
SPI device 534 may be operated in accordance with software
(e.g., a computer program for execution by a computer),
stored on a computer-readable medium, configured to instruct
master SPI device 534 to perform one or more of the opera
tions described herein.

Similar to PLD 100 of FIG. 5, PLD 600 includes a CIB
select fuse 514 may be programmed to select between signals
provided at pins 523 and a set of CIB signals 518. It will be
appreciated that, in the embodiment of FIG. 10, CIB fuse 514
may operate with an opposite polarity in comparison with the
embodiment of FIG. 5. PLD 600 also includes an additional
CIB 529 to facilitate communication between master SPI
block 302, slave SPI block 304, and data port 112(2) within
PLD 6OO.

Also similar to PLD 100 of FIG. 5, PLD 600 includes
configuration pins 508 and 510 (labeled CFGO and CFG1).
Additionally, PLD 600 includes a configuration pin 511 (la
beled CFG2). In one embodiment, PLD 600 may be config
ured to load configuration data from master SPI port 112(1)
when configuration pin 511 is set to a logical low value, and
configured to load configuration data from slave SPI port
112(3) when configuration pin 511 is set to a logical high
value. In the embodiment shown in FIG. 10, configuration
pins 508, 510, and 511 are connected with master SPI block
302 and slave SPI block 304, and may be used to further
adjust the operation of Such blocks as may be desired in
particular implementations.

FIG. 11 shows a block diagram illustrating a program
mable logic device system that includes PLD 600, master SPI
device 534, and external non-volatile memory 524 in accor
dance with an embodiment of the present invention. In the
embodiment of FIG. 11, PLD 600 is connected with external
non-volatile memory 524 through data port 112(1) (imple
mented in this embodiment as a master SPI port). In addition,
PLD 600 is connected with master SPI device 534 (imple
mented by a CPU in FIG. 11) through data port 112(3)(imple
mented in this embodiment as a slave SPI port) and PRO

10

15

25

30

35

40

45

50

55

60

65

12
GRAM pin 502. Also in the embodiment of FIG. 11, PLD 600
is implemented with a HOLD pin 550 which is disconnected
from master SPI device 534 in FIG. 11.
PLD 600 may be implemented to boot using configuration

data from external non-volatile memory 524 through master
SPI port 112(1) when configuration pin 511 is set to a logical
low value in the manner shown in the embodiment of FIG.11.
In this regard, PLD 600 may provide a master clock signal to
external non-volatile memory 524 through one of pins 522
(e.g., pin SCLK) and receive configuration data from external
non-volatile memory 524 through one of pins 522 (e.g., pin
SPIDO) for loading into configuration memory 114. For
example, referring to FIG. 10, it will be appreciated that
configuration data received through pin SPIDO of PLD 600
may be programmed into configuration memory 114 through
master SPI block 302.
PLD 600 may be further implemented to facilitate pro

gramming external non-volatile memory 524 from master
SPI device 534. In this regard, PLD 600 may receive data
from master SPI device 534 through pin SI of data port
112(3). Referring to FIG. 10, it will be appreciated that data
received through pin SI of PLD 600 may be passed between
slave SPI block 304 and master SPI block 302 through CIB
529, and out pin SISPI to external non-volatile memory 524.
In addition, by toggling PROGRAM pin 502, master SPI
device 534 may command PLD 600 boot from external non
volatile memory 524.

FIG. 12 shows a block diagram illustrating another pro
grammable logic device system that includes PLD 600, mas
ter SPI device 534, and external non-volatile memory 524 in
accordance with an embodiment of the present invention. In
the embodiment of FIG. 12, PLD 600 is connected with
external non-volatile memory 524 and master SPI device 534
(implemented by a CPU in FIG. 11) through data port 112(3)
(implemented in this embodiment as a slave SPI port). Also in
the embodiment of FIG. 12, PLD 600 is further connected
with master SPI device 534 through HOLD pin 550. Option
ally, PROGRAM pin 502 may be omitted from PLD 600 in
the embodiment shown in FIG. 12.

Master SPI device 534 may be configured by appropriate
boot code stored by external non-volatile memory 524. In this
regard, a master SPI port of master SPI device 534 may be
connected with a slave SPI port external non-volatile memory
524 to synchronize the transfer of boot code from external
non-volatile memory 524 to master SPI device 534 using a
clock signal provided from the master SPI port of master SPI
device 534 to the slave SPI port of external non-volatile
memory 524.

Following the configuration of master SPI device 534, PLD
600 may be implemented to boot using configuration data
received through data port 112(3) when configuration pin 511
is set to a logical high value in the manner shown in the
embodiment of FIG. 12. In this regard, PLD 600 may be
implemented to receive configuration data from data port
112(3) under the control of master SPI device 534. For
example, in one embodiment, master SPI device 534 may
provide a logical low signal to a chip select pin (labeled /S in
FIG. 12) of data port 112(3) and subsequently shift a write
command to a data input pin (labeled SI in FIG. 12) to prepare
PLD 600 to receive configuration data through data port 112
(3).

Master SPI device 534 may then read configuration data
from external non-volatile memory 524 and shift the configu
ration data into PLD 600. For example, in one embodiment,
master SPI device 534 may read an entire configuration data
bitstream from external non-volatile memory 524 into

US 7,570,078 B1
13

memory of master SPI device 534, and then pass the bitstream
to PLD 600 through data port 112(3).

In another embodiment, master SPI device 534 may read a
portion (e.g., a frame or segment) of a configuration data
bitstream from external non-volatile memory 524 into
memory of master SPI device 534, and then pass the portion
on to PLD 600 through data port 112(3). Additional portions
of the configuration data bitstream can be repeatedly read and
passed until an entire configuration data bitstream is provided
to PLD 600. While reading each portion of the configuration
data bitstream, master SPI device 534 may drive HOLD pin
550 to a logicallow state to instruct PLD 600 to wait to receive
the next portion of the configuration data bitstream.

In view of the present disclosure, it will be appreciated that
a programmable logic device having for example one or more
data ports Supporting convenient programming interfaces
(e.g., SPI ports) can provide a variety of flexible options for
loading configuration data into onboard memory (such as
non-volatile flash memory and SRAM memory cells) and/or
external memory (such as external non-volatile or Volatile
memory). It will further be appreciated that a programmable
logic device implemented in accordance with one or more of
the embodiments described herein allows SPI interface
blocks, used to Support a programming interface (e.g., a data
port), to also support user-defined operation.

Although various features have been described herein with
regard to external non-volatile memory 524, it will be appre
ciated that any Volatile or non-volatile memory may be used
in conjunction with the various data ports described herein
where appropriate. It will also be appreciated that various
features described herein with respect to configuration
memory 114 of FIGS. 6-12 may be applied to non-volatile
memory 106 when optionally included in PLD 600.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the scope
of the invention is defined only by the following claims.
We claim:
1. A method of configuring a programmable logic device

(PLD), the method comprising:
receiving boot code at a master serial peripheral interface

(SPI) port of a first external device from a slave SPI port
of a second external device;

booting the first external device using the boot code:
receiving configuration data at the master SPI port of the

first external device from the slave SPI port of the second
external device;

maintaining the configuration data in a memory of the first
external device; and

passing the configuration data from the master SPI port of
the first external device to a slave SPI port of the PLD to
facilitate programming a memory of the PLD with the
configuration data to configure the PLD for its intended
function, wherein the slave SPI port of the PLD is con
nected with the master SPI port of the first external
device and is also connected with the slave SPI port of
the second external device.

2. The method of claim 1, wherein the configuration data
comprises an entire configuration data bitstream.

3. The method of claim 1, wherein the configuration data
comprises a portion of a configuration data bitstream, and
wherein the method further comprises repeating the receiv
ing, maintaining, and passing steps for all portions of the
configuration data bitstream.

4. The method of claim 1, wherein the memory of the PLD
is Volatile memory.

5

10

15

25

30

35

40

45

50

55

60

65

14
5. The method of claim 1, wherein the first external device

is a data processing device, and the second external device is
a non-volatile memory device.

6. The method of claim 1, wherein the slave SPI port of the
PLD is a dedicated slave SPI port.

7. A programmable logic device system comprising:
a memory device comprising a slave serial peripheral inter

face (SPI) port, wherein the memory device is adapted to
store configuration data and boot code;

a programmable logic device (PLD) comprising a slave
SPI port connected with the slave SPI port of the
memory device, the PLD further comprising a memory
adapted to be programmed with the configuration data to
configure the PLD for its intended function; and

a data processing device comprising a master SPI port
connected with the slave SPI port of the memory device
and the slave port of the PLD, wherein the data process
ing device is adapted to receive the boot code from the
memory device through the master SPI port and boot
using the received boot code, wherein the data process
ing device is further adapted to receive the configuration
data from the memory device through the master SPI
port and pass the configuration data from the master SPI
port to the slave SPI port of the PLD.

8. The programmable logic device system of claim 7.
wherein the configuration data comprises an entire configu
ration data bitstream.

9. The programmable logic device system of claim 7.
wherein the configuration data comprises a portion of a con
figuration data bitstream, and wherein the data processing
device is further adapted to receive and pass all portions of the
configuration data bitstream.

10. The programmable logic device system of claim 7.
wherein the memory of the PLD is volatile memory.

11. The programmable logic device system of claim 7.
wherein the memory device is a non-volatile memory device.

12. The programmable logic device system of claim 7.
wherein the slave SPI port of the PLD is a dedicated slave SPI
port.

13. A computer-readable medium on which is stored a
computer program for performing a method comprising:

receiving configuration data at a master serial peripheral
interface (SPI) port of a first external device from a slave
SPI port of a second external device:

maintaining the configuration data in a memory of the first
external device;

passing the configuration data from the master SPI port of
the first external device to a slave SPI port of a program
mable logic device (PLD) to facilitate programming a
memory of the PLD with the configuration data to con
figure the PLD for its intended function, wherein the
slave SPI port of the PLD is connected with the master
SPI port of the first external device and is also connected
with the slave SPI port of the second external device,
wherein the configuration data comprises a portion of a
configuration data bitstream; and

repeating the receiving, maintaining, and passing steps for
all portions of the configuration data bitstream.

14. A method of operating a programmable logic device
(PLD), the method comprising:

clocking a configuration data bitstream from a master
serial peripheral interface (SPI) port of a first external
device to a slave SPI port of the PLD with a slave clock
signal provided by the first external device;

passing the configuration data bitstream through the PLD
from the slave SPI port of the PLD to a master SPI port
of the PLD; and

US 7,570,078 B1
15

clocking the configuration data bitstream from the master
SPI port of the PLD to a slave SPI port of a second
external device with a master clock signal provided by
the PLD.

15. The method of claim 14, further comprising:
receiving the configuration data bitstream at the master SPI

port of the PLD from the slave SPI port of the PLD; and
programming a memory of the PLD to store the configu

ration data bitstream to configure the PLD for its
intended function.

16. The method of claim 15, wherein the memory of the
PLD is volatile memory.

17. The method of claim 14, wherein the first external
device is a data processing device and the second external
device is a non-volatile memory device.

18. The method of claim 14, wherein the PLD includes a
common interface block coupled between the slave SPI port
of the PLD and the master SPI port of the PLD, the common
interface block adapted to pass the configuration data bit
stream from the slave SPI port to the master SPI port under the
control of the PLD.

19. A programmable logic device (PLD) comprising:
a slave serial peripheral interface (SPI) port adapted to

receive a configuration data bitstream and a slave clock
signal from a master SPI port of a first external device,
wherein the bitstream is clocked from the first external
device to the PLD by the slave clock signal;

10

15

25

16
a master SPI port adapted to provide the configuration data

bitstream and a master clock signal from the PLD to a
slave SPI port of a second external device, wherein the
bitstream is clocked from the PLD to the second external
device by the master clock signal; and

an interface block adapted to pass the configuration data
bitstream from the slave SPI port through the PLD to the
master SPI port.

20. The PLD of claim 19, wherein the master SPI port is
adapted to receive the configuration data bitstream from the
slave SPI port of second external device, the PLD further
comprising a memory adapted to store the configuration data
bitstream received from the second external device to config
ure the PLD for its intended function.

21. The PLD of claim 20, wherein the memory of the PLD
is Volatile memory.

22. The PLD of claim 19, wherein the first external device
is a data processing device and the second external device is
a non-volatile memory device.

23. The PLD of claim 19 including a common interface
block coupled between the slave SPI port of the PLD and the
master SPI port of the PLD, the common interface block
adapted to pass the configuration data bitstream from the
slave SPI port to the master SPI port under the control of the
PLD.

