
United States Patent

USOO7397274B1

(12) (10) Patent No.: US 7,397.274 B1
Tang et al. (45) Date of Patent: Jul. 8, 2008

(54) IN-SYSTEM PROGRAMMING OFA 6,564,285 B1 5/2003 Mills et al.
NON-COMPLIANT DEVICE USING 6,567,518 B1 5/2003 Weir
MULTIPLE INTERFACES OF A PLD 6,614,259 B2 * 9/2003 Couts-Martin et al. 326,40

6,785,165 B2 8/2004 Kawahara et al.

(75) Inventors: Howard Tang, San Jose, CA (US); 7,078,929 B 72006 Draper 2004, OO61147 A1 4/2004 Fujita et al.
Satwant Singh, Fremont, CA (US); 2004, OO64622 A1 4, 2004 Smith
San-Ta Kow, San Jose, CA (US)

OTHER PUBLICATIONS

(73) Assignee: late St. inductor Corporation, Atmel Datasheet entitled “FPGA Configuration EEPROM Memory
illsboro, OR (US) 3.3V and 5V System Support”, Rev. 2321E-CNFG-06/03, pp. 1-23.

c - r MAX II Device Handbook, vol. 1, Chapter 3, JTAG & In-System
(*) Notice: subsists still Programmability. Altera Corporation, Dec. 2004, pp. 3-1 through

3-8.
U.S.C. 154(b) by 145 days. U.S. Appl. No. 10/809,658, filed Mar. 25, 2004.

Notice of Allowance in U.S. Appl. No. 1 1/098,713, for double pat
(21) Appl. No.: 11/100,718 enting review, filed Apr. 4, 2005.

k .
(22) Filed: Apr. 7, 2005 cited by examiner

Primary Examiner Daniel D Chang
(51) Int. Cl. (74) Attorney, Agent, or Firm Mendelsohn & Associates,

tle % 3.08: P.C.; Kevin M. Drucker; Steve Mendelsohn
(52) U.S. Cl. 326/40: 326/16: 326/46; (57) ABSTRACT

714/726
(58) Field of Classification Search 326/16. In one embodiment of the invention, a programmable logic

326/37, 38, 39, 40, 41, 46, 47: 714/725, device such as an FPGA includes a programmable fabric; a
714/726 JTAG interface operable to receive configuration data for

See application file for complete search history. programming the fabric; a SPI interface operable tO receive
and transmit configuration data for programming the fabric;

(56) References Cited and circuitry coupled to the JTAG and SPI interfaces. The
U.S. PATENT DOCUMENTS

5,794,033. A 8, 1998 Aldebert et al.
6,038,185 A 3/2000 Ng et al.
6,044,025 A 3/2000 Lawman
6,507,214 B1 1/2003 Snyder

circuitry is operable, without being configured, to transfer
configuration data received at the JTAG interface to the SPI
interface for transmission to an external device having a SPI
interface, such as a serial flash memory.

20 Claims, 6 Drawing Sheets

310

Boot PROM 314
D SP E. E. S CR

320

TD
TCK

TDO

interface C. : 336 TS A ShiftDR
as 1 ||

330

326

312

U.S. Patent Jul. 8, 2008 Sheet 1 of 6 US 7,397.274 B1

JTAG
interface

Volatile

FIG. 1
(Prior Art)

210
212

JTAG
Interface

Volatile

FIG. 2
(Prior Art)

U.S. Patent Jul. 8, 2008 Sheet 2 of 6 US 7,397.274 B1

Interface

O

S P interce
yNANANA

Interface Of... . 336 / Shift-DR

are 1 ||
330 ul

TDO

SP Program enable bit
TD SPI Program D 17 JTAG Y / TD
TMS
TDO

312

U.S. Patent Jul. 8, 2008 Sheet 3 of 6 US 7,397.274 B1

FIG. 4 402

Step through to state Update-IR
404

At state Update-IR: Load ISC Setup to select CONFIG register

Step through to state Shift-DR 406

At state Shift-DR: Load SPI_Program enable bit into r'
CONFIG register to enable SP flash programming

Step through to state Update-IR 410

At state Update IR: Load SP Program to connect TD to BUSY/Dl,
TCK to CCLK, TDO to D7/Q, and / Shift-DR signal to DI/CSn

Step through to state Shift-DR

At state Shift-DR: Enable SPI flash and shift program
command & data into SP flash using signal TD

Step through to state Exit 1-DR

At state Exit 1 DR: Drive signal CSn high to execute command

Step through to state Exit 2-DR

At State
Exit 2-DR: Determine whether

programming/readback
is complete

YES
426

Step through to state Update-R 428

At state Update-R: Load ISC Setup instruction into CONFIG

412

register to clear SP program enable bit to exit programming mode

U.S. Patent Jul. 8, 2008 Sheet 4 of 6 US 7,397.274 B1

52O 540

Test-Logic-Reset

Exit2-DR

U.S. Patent Jul. 8, 2008 Sheet 5 of 6 US 7,397.274 B1

610

TDO
TCK
TMS

TD

D C S O D C S O
614-2

SP interface
1

SP Interface
2

BOOt PROM 1 BOOt PROM2 620-2

FIG. 6

U.S. Patent Jul. 8, 2008 Sheet 6 of 6 US 7,397.274 B1

610

TDO
TCK
TMS

to to -
BYPASS BYPASS TD

SP Interface SPI interface 614-2
1 2

(Programming) (Inactive)
Boot PROM 620-2

TDO
TCK
TMS

TD

SPI interface 614-2
1

(Inactive)

SP Interface
2

(Programming)

Boot PROM 620-2

US 7,397.274 B1
1.

N-SYSTEMI PROGRAMMING OFA
NON-COMPLIANT DEVICE USING
MULTIPLE INTERFACES OF A PLD

TECHNICAL FIELD

The present invention relates to programmable logic
devices, such as field-programmable gate arrays (FPGAs),
and, in particular, to techniques for programming certain
devices, such as serial flash memory, that hold data for con
figuring an FPGA.

BACKGROUND

Volatile programmable logic devices, such as FPGAs, typi
cally rely on non-volatile external storage media to hold data
used to configure the devices. For example, programmable
read-only memory (PROM) devices are often used to hold the
configuration data for FPGAs. Such devices are referred to as
“boot PROMs.” because they are used to boot (i.e., initialize)
programmable devices, such as volatile FPGAs. A boot
PROM device is first programmed with a data pattern in the
form of a bitstream corresponding to the desired FPGA con
figuration, which is typically achieved using an off-board
stand-alone programming device, although it is often prefer
able to program the PROM on-board or in-system.

On-board PROM programming is typically performed
using a JTAG interface, which is adapted to communicate
with devices compliant with the Joint Test Action Group
(JTAG) IEEE 1149.1 standard, which governs in-system flash
programming. Hence, the term “JTAG” is used with reference
both to the standard itself and to devices that are compliant
with the standard, which are referred to simply as “JTAG
devices.”

However, most memory devices that are commonly used as
boot PROMs do not comply with the JTAG standard and thus
typically require off-board programming. These devices
include, e.g., flash memory devices having a Serial Peripheral
Interface (SPI) interface. As understood by those skilled in
the art, the term "SPI indicates compliance with the Serial
Peripheral Interface industry bus standard specified by
Motorola Corporation of Schaumburg, Ill.

FIG. 1 illustrates a first conventional architecture 110 for
programming a JTAG-noncompliant boot PROM120. FPGA
112 includes an on-chip JTAG interface 116 (often referred to
as a “JTAG engine' or as a “Test Access Port (TAP) control
ler”) and an on-chip SPI interface 118. SPI interface 118 of
FPGA 112 is connected to a SPI interface 114 of a boot
PROM120. In the configuration shown, two headers 122,124
are provided. The first header is a JTAG header 122 connected
to JTAG interface 116 and is used for programming FPGA
112 from an external device (not shown) attached to JTAG
header 122. The second header is a SPI header 124 connected
to SPI interfaces 118 and 114 and is used to program boot
PROM 120 by means of an external device (not shown)
coupled to SPI header 124. This configuration permits three
modes of operation: (1) programming boot PROM120 using
an external device attached to SPI header 124; (2) using
programmed boot PROM120 to program FPGA112; and (3)
programming FPGA 112 through its JTAG interface. This
approach involves the board space and fabrication cost of
providing two different headers involving two different sets
of operations.

FIG. 2 illustrates a second conventional architecture 210
for programming a JTAG-noncompliant boot PROM 220.
FPGA 212 includes an on-chip JTAG interface 216 and an
on-chip SPI interface 218. SPI interface 218 of FPGA 212 is

10

15

25

30

35

40

45

50

55

60

65

2
connected to a SPI interface 214 of a boot PROM 220. In the
configuration shown, a JTAG header 222 is connected to
JTAG interface 216 and is used for programming FPGA 212
from an external device (not shown) attached to JTAG header
222. JTAG interface 216 and SPI interface 218 are not elec
trically connected to one another until FPGA 212 has been
programmed to make such internal connections, as illustrated
graphically by the broken lines in region 226. This configu
ration permits three modes of operation: (1)(a) first using an
external device (not shown) coupled to JTAG header 222 to
pre-program FPGA 212 via JTAG interface 216, thereby
forming the internal connections shown in region 226, and
then (b) using the external device attached to JTAG header
222 to program boot PROM 220 via internal connections to
SPI interface 218; (2) using boot PROM 220 to program
FPGA 212; and (3) programming FPGA 212 through its
JTAG interface 216. The two-step approach for programming
boot PROM 220 complicates the programming process,
thereby increasing programming cost. This cost of pre-pro
gramming an FPGA device becomes prohibitive when a large
Volume of on-board production programming of the boot
PROM is done on automated testing equipment (ATE). More
over, this two-step programming approach complicates the
process of performing field upgrades to the boot PROM.

SUMMARY

In one embodiment of the invention, a programmable logic
device includes a programmable fabric; a first interface com
pliant with a first standard and operable to receive configura
tion data for programming the fabric; a second interface com
pliant with a second standard and operable to receive and
transmit configuration data for programming the fabric; and
dedicated circuitry coupled to the first and second interfaces.
The dedicated circuitry is operable to transfer configuration
data received at the first interface in accordance with the first
standard to the second interface for transmission in accor
dance with the second standard to an external device having
an interface compliant with the second standard.

In another embodiment of the invention, a programmable
logic device includes a programmable fabric; a JTAG inter
face operable to receive configuration data for programming
the fabric; a SPI interface operable to receive and transmit
configuration data for programming the fabric; and circuitry
coupled to the JTAG and SPI interfaces. The circuitry is
operable, without being configured, to transfer configuration
data received at the JTAG interface to the SPI interface for
transmission to an external device having a SPI interface.

BRIEF DESCRIPTION OF THE DRAWINGS

Other aspects, features, and advantages of the present
invention will become more fully apparent from the following
detailed description, the appended claims, and the accompa
nying drawings in which like reference numerals identify
similar or identical elements.

FIG. 1 is a block diagram of a first conventional architec
ture for programming a JTAG-noncompliant boot PROM;

FIG. 2 is a block diagram of a second conventional archi
tecture for programming a JTAG-noncompliant boot PROM;

FIG. 3 is a block diagram of a first embodiment of the
present invention for programming a JTAG-noncompliant
boot PROM;

FIG. 4 is a flow diagram for programming the PROM in of
FIG.3:

FIG. 5 is a state transition diagram for the JTAG interface
of the FPGA of FIG. 3;

US 7,397.274 B1
3

FIG. 6 is a block diagram of a second embodiment of the
present invention for programming multiple JTAG-noncom
pliant boot PROMs:

FIG. 7 is a block diagram of the architecture of FIG. 6
during the programming of the first PROM, with the second
and third FPGAs inactive; and

FIG. 8 is a block diagram of the architecture of FIG. 6
during the programming of the second PROM, with the first
and third FPGAs inactive.

DETAILED DESCRIPTION

Single SPI Boot PROM Architecture
FIG.3 shows a block diagram of an exemplary architecture

310 in a first embodiment of the present invention, for using
an FPGA 312 to program a JTAG-noncompliant boot PROM
320 in an electronic system. As shown, in this exemplary
embodiment, PROM 320 is a conventional SPI serial flash
PROM device that includes a port for a SPI interface 314.
FPGA 312 includes ports for a JTAG interface 316 and a SPI
interface 318, programmable fabric or system logic 326, a
gate 340, four multiplexers (muxes)330,332,334,336, and a
demultiplexer (demux) 338. JTAG interface 316 connects to a
JTAG header (not shown) for attachment to an external JTAG
compliant device (not shown).
JTAG interface 316 receives signals TDI, TCK, and TMS

from the external device and provides a signal TDO to the
external device, which signals are defined as follows:

TDI: Test Data Input signal provided by the external device
for Supplying one or more of instructions and data (e.g.,
configuration data) from the external device to the reg
isters of JTAG interface 316.

TMS: Test Mode Select signal provided by the external
device for selecting the operational mode of JTAG inter
face 316, i.e., controlling JTAG interface state machine
transitions.

TDO: Test Data Output signal provided to the external
device for serially outputting one or more of instructions
and data from the registers of JTAG interface 316 to the
external device.

TCK: Dedicated Test Clock signal provided by the external
device for controlling timing of the JTAG interface inde
pendently from other FPGA system clocks. This signal
is used to shift the TMS and TDI signals into JTAG
interface 316 and to shift the TDO signal out of the JTAG
interface 316.

Within FPGA 312, JTAG interface 316 provides and
receives the following signals:

SPI Program enable bit: Signal provided to gate 340 for
jointly controlling, with signal SPI Program, whether
boot PROM 320 is being programmed by FPGA 312.

SPI program: Signal provided to gate 340 for jointly con
trolling, with signal SPI Program enable bit, whether
boot PROM 320 is being programmed by FPGA 312.

TDI: Test Data Input signal (e.g., configuration data) pro
vided to multiplexer 332 and to system logic 326.

TCK: Test Clock signal provided to multiplexer 334 and to
system logic 326.

/Shift-DR: Control signal provided to multiplexer 336, for
enabling SPI interface 314 of PROM 320.

TDO: Test Data Output signal provided to JTAG Interface
316 by multiplexer 330.

SPI interface 318 of FPGA 312 interfaces with SPI inter
face 314 of PROM320 and provides to and receives from SPI
interface 314 the following signals:

5

10

15

25

30

35

40

45

50

55

60

65

4
BUSY/DI (D): Data Input signal for transmitting com
mands and data (e.g., configuration data) from SPI inter
face 318 to SPI interface 314.

CCLK (C): Configuration Clock signal transmitted from
SPI interface 318 to SPI interface 314, used to control
the timing of storing serial configuration data into
PROM 320 and reading serial configuration data out
from PROM 320.

DI/CSn (S): Control Signal for enabling SPI interface 314
of PROM 32O.

D7/Q (Q): Data signal for transmitting commands and data
(e.g., configuration data) from SPI interface 314 of
PROM 320 to SPI interface 318 of FPGA 312.

Dedicated circuitry (i.e., circuitry that is operable to per
form its intended function without being programmed or
configured) is integrated within FPGA 312 to couple JTAG
interface 316 to SPI interface 318. Such circuitry may be
implemented in a number of ways. In one embodiment, the
circuitry includes the following logic devices. Gate 340 is an
AND gate in the exemplary embodiment shown, although one
or more other Switching devices (e.g., a latch) could alterna
tively be used to achieve the same or similar functionality.
Gate 340 receives signals SPI Program enable bit and
SPI Program from JTAG interface 316, applies a logical
AND operation to the two signals, and provides a resulting
one-bit control signal to multiplexers 330,332,334, and 336
and to demultiplexer 338. If this one-bit control signal is high,
then the “1” inputs of multiplexers 330,332,334, and 336 and
the “1” output of demultiplexer 338 are selected, and if this
control signal is low, then the “O'” inputs of multiplexers 330,
332,334, and 336 and the “0” output of demultiplexer 338 are
selected. The reason for using two separate signals SPI Pro
gram enable bit and SPI program in this embodiment is for
security, to minimize the chance of accidental programming
of boot PROM 320 that might occur if only a single signal
were used. In other embodiments of the invention, a single
signal could be used instead of two signals, and AND gate 340
could be eliminated.

System logic 326 receives configuration data provided by
boot PROM 320. System logic 326 may also be used during
normal operation of FPGA 312, to provide and receive com
mands and/or data, e.g., via the JTAG interface 316.

Multiplexer 330 provides a TDO signal to JTAG interface
316. If the “1” input of multiplexer 330 is selected, then
multiplexer 330 selects a signal received from demultiplexer
338 to be output as TDO. If the “0” input of multiplexer 330
is selected, then multiplexer 330 selects a signal generated by
system logic 326 to be provided as TDO. During normal
operation, signals other than those shown in FIG.3 may be
transferred between JTAG interface 316 and system logic
326.

Multiplexer 332 provides a data signal to SPI interface 318,
which signal SPI interface 318 provides to SPI interface 314
of boot PROM 320 as BUSY/DI (D). If the “1” input of
multiplexer 332 is selected, then multiplexer 332 selects the
TDI signal received from JTAG interface 316 to be provided
to SPI interface 318. If the “0” input of multiplexer 332 is
selected, then multiplexer 332 selects a data signal received
from system logic 326 to be provided to SPI interface 318.

Multiplexer 334 provides a clock signal to SPI interface
318, which signal SPI interface 318 provides to SPI interface
314 of boot PROM 320 as CCLK (C). If the “1” input of
multiplexer 334 is selected, then multiplexer 334 selects the
TCK signal received from JTAG interface 316 to be provided
to SPI interface 318. If the “0” input of multiplexer 334 is
selected, then multiplexer 334 selects a clock signal received
from system logic 326 to be provided to SPI interface 318.

US 7,397.274 B1
5

Multiplexer 336 provides a control signal to SPI interface
318, which signal SPI interface 318 provides to SPI interface
314 of boot PROM 320 as DI/CSn (S). If the “1” input of
multiplexer 336 is selected, then multiplexer 336 selects the
(Shift-DR signal received from JTAG interface 316 to be
provided to SPI interface 318. If the “0” input of multiplexer
336 is selected, then multiplexer 336 selects a control signal
received from system logic to be provided to SPI interface
318.

Demultiplexer 338 receives a data signal D7/Q (Q) from
SPI interface 314 of boot PROM 320. If the “1” output of
demultiplexer 338 is selected, then demultiplexer 338 pro
vides the data signal received from SPI interface 314 to the
“1” input of multiplexer 330. If the “0” output of demulti
plexer 338 is selected, then demultiplexer 338 provides the
data signal received from SPI interface 314 to system logic
326.

SPI interface 318 receives the output signals from multi
plexers 332,334, and 336 and provides these signals to boot
PROM320 as BUSY/DI (D), CCLK (C), and DI/CSn(S). SPI
interface 318 receives input signal D7/Q (Q) from boot
PROM 320 and provides this signal to demultiplexer 338.

Devices 330,332,334,336, and 338 could alternatively be
replaced with one or more other Switching devices to achieve
the same or similar functionality. While devices 330, 332,
334, 336, and 338 are shown in FIG.3 as being independent
from other components, it should be recognized that one or
more of these devices could alternatively be incorporated into
SPI interface 318 or another portion of FPGA 312.
JTAG interface 316 of FPGA 312, in this exemplary

embodiment, includes instruction registers, and data regis
ters. The data registers include a CONFIG (also called bound
ary-scan) register and a BYPASS register. The data shifted
into the instruction registers define what actions are to be
carried out by the JTAG circuitry. The CONFIG register
allows access to the I/O pins of the chip, e.g., for testing or
configuration purposes. The BYPASS register is selected
after a reset or during a bypass instruction, in which case data
is passed serially directly from the TDI to the TDO pins of the
JTAG interface.
JTAG interface 316 of FPGA 312, in this exemplary

embodiment, implements a sixteen-state finite-state machine
(although other numbers of states are possible in other
embodiments) for controlling the state progression of the
JTAG logic and providing serial access to the instruction and
data modules of JTAG interface 316. The state machine
responds to control sequences Supplied through the TMS
input to JTAG interface 316.
The state machine performs according to the state transi

tion diagram provided as FIG. 5, wherein the “0” and “1”
values indicate the TMS values that control state transitions.
In data path 520, states include the letters “-DR. and the data
registers operate. In instruction path 540, states include the
letters “-IR and the instruction registers operate.
JTAG interface 316 uses the two inputs TMS and TCK to

generate control and clock signals for the rest of JTAG inter
face 316. The state of the state machine changes based on the
value of TMS.

The operation of each state is described below:
Test-Logic-Reset: All on-chip logic is disabled in this state,

thereby enabling the normal operation of JTAG interface
316. Upon power-up, the state machine enters the Test
Logic-Reset state.

Run-Test-Idle: In this state, the logic in JTAG interface 316
is active only if certain instructions are present. For
example, if an instruction activates the self-test, then the

5

10

15

25

30

35

40

45

50

55

60

65

6
self-test is executed when JTAG interface 316 is in this
state. The logic in JTAG interface 316 is otherwise idle.

Select-DR-Scan: This state controls whether to enter pro
ceed with data path 520 or transition to the Select-IR
Scan state.

Select-IR-Scan: This state controls whether to proceed
with instruction path 540 or return to the Test-Logic
Reset state.

Capture-IR: In this state, a shift register bank in the instruc
tion registers loads in parallel a pattern of fixed values,
and an instruction is loaded into one of the instruction
registers.

Shift-IR: In this state, the instruction registers become
connected between TDI and TDO, and the captured
instruction gets shifted out to TDO. The next instruction
present at the TDI input is also shifted in to the instruc
tion registers.

Exit 1-IR: This state controls whether to enter the Pause-IR
state or Update-IR state.

Pause-IR: In this state, the shifting of the instruction reg
isters is halted.

Exit 2-IR: This state controls whether to enter either the
Shift-IR state or Update-IR state.

Update-IR: In this state, the instruction in the instruction
registers is latched to a latch bank, at which point the
instruction becomes the current instruction for execu
tion.

Capture-DR: In this state, data is loaded into one of the data
registers selected by the current instruction.

Shift-DR: In this state, the data registers become connected
between TDI and TDO, and the captured data gets
shifted out to TDO. The next data available on the TDI
pin is shifted in to the data registers.

Exit 1-DR: This state controls whether to enter the Pause
DR state or Update-DR state.

Pause-DR: In this state, the shifting of the data registers is
halted.

Exit 2-DR: This state controls whether to enter either the
Shift-DR state or Update-DR state.
Update-DR: In this state, the data in the data registers is

latched to a latch bank, at which point the data becomes
the current data.

JTAG interface 316 supports three modes of operation: (1)
programming boot PROM 320 using FPGA 312; (2) using
programmed boot PROM320 to program FPGA 312; and (3)
normal operation of FPGA 312.

(1) Programming boot PROM 320 using FPGA 312: This
mode is entered when JTAG interface 316 generates a “1” for
both of the signals SPI Program enable bit and SPI pro
gram, which causes gate 340 to output a “1” signal. Receipt of
the “1” signal causes the following connections to be made
within FPGA 312:

(i) multiplexer 332 provides the TDI signal from JTAG
interface 316 to SPI interface 318, which signal SPI
interface 318 provides as BUSY/DI (D) to SPI interface
314 of boot PROM 320:

(ii) multiplexer 334 provides the TCK signal from JTAG
interface 316 to SPI interface 318, which signal SPI
interface 318 provides as CCLK (C) to SPI interface 314
of boot PROM 320:

(iii) multiplexer 336 provides the /Shift-DR signal from
JTAG interface 316 to SPI interface 318, which signal
SPI interface 318 provides as DI/CSn (S) to SPI inter
face 314 of boot PROM 320:

(iv) demultiplexer 338 provides to multiplexer 330 the
signal received by SPI interface 318 as D7/Q (Q) from
SPI interface 314 of boot PROM 320; and

US 7,397.274 B1
7

(v) multiplexer 330 provides the signal received from
demultiplexer 338 as signal TDO to JTAG interface 316.

In this mode of operation, the foregoing connections per
mit FPGA 312 to program boot PROM 320 with the stored
boot pattern, via JTAG interface 316 and SPI interface 318 of
FPGA 312 and SPI interface 314 of boot PROM 320.
An exemplary method of programming of PROM320 pro

ceeds as follows, with reference now to the exemplary flow
chart of FIG. 4. At block 402, the state machine steps through
to the Update-IR state. At block 404, a setup instruction
ISC Setup is loaded to select the CONFIG register of JTAG
interface 316. At block 406, the state machine steps through to
the Shift-DR state. At block 408, the SPI Program ena
ble bit is loaded into the CONFIG register to enable pro
gramming of boot PROM 320. At block 410, the state
machine steps through to the Update-IR state. At block 412,
the SPI Program bit is loaded to connect (i) the TDI output of
JTAG interface 316 with the BUSY/DI (D) input of SPI
interface 318; (ii) the TCK output of JTAG interface 316 with
the CCLK (C) input of SPI interface 318; (iii) the (Shift-DR
output of JTAG interface 316 with the DI/CSn(S) input of SPI
interface 318; and (iv) the TDO input of JTAG interface 316
with the D7/Q (Q) output of SPI interface 318. At block 414,
the state machine steps through to the Shift-DR state. At block
416, programming of boot PROM 320 is enabled, and a
program command and configuration data can be shifted into
the PROM using signal TDI. At block 418, the state machine
steps through to state Exit 1-DR. At block 420, the signal CSn
is driven high to execute the command. At block 422, the state
machine steps through to state Exit 2-DR. At block 424, a
determination is made whether programming is complete, in
which case the method proceeds to block 426. If program
ming is not complete, then the method returns to block 414 to
load more configuration data into PROM 320. At block 426,
the state machine steps through to state Update-IR. At block
428, the setup instruction ISC Setup is loaded to clear the
SPI Program enable bit to exit programming mode.

(2) Using programmed boot PROM320 to program FPGA
312: This mode is entered when JTAG interface 316 has not
generated a “1” for both of the signals SPI Program ena
ble bit and SPI program, in which case gate 340 outputs a
“0” signal. Receipt of the “0” signal causes the following
connections to be made within FPGA 312:

(i) multiplexer 332 provides a data signal from system
logic 326 to SPI interface 318, which SPI interface 318
provides as BUSY/DI (D) to SPI interface 314 of boot
PROM 320;

(ii) multiplexer 334 provides a clock signal from system
logic 326 to SPI interface 318, which SPI interface 318
provides as CCLK (C) to SPI interface 314 of boot
PROM 320;

(iii) multiplexer 336 provides a control signal from system
logic 326 to SPI interface 318, which SPI interface 318
provides as DI/CSn (S) to SPI interface 314 of boot
PROM 320;

(iv) demultiplexer 338 provides to system logic 326 the
signal received by SPI interface 318 as D7/Q (Q) from
SPI interface 314 of boot PROM 320; and

(v) multiplexer 330 provides the signal received from sys
tem logic CGas signal TDO to JTAG interface 316.

In this mode of operation, the foregoing connections per
mit boot PROM 320 to program FPGA 312 with the stored
FPGA boot pattern via the respective SPI interfaces 314,318
of the devices, as is conventionally done in the prior art.

(3) Normal operation of FPGA 312: The internal connec
tions for this conventional prior art mode of operation are the
same as those of mode (2). In this mode of operation, FPGA

5

10

15

25

30

35

40

45

50

55

60

65

8
312 interfaces with an external device (not shown) connected
to JTAG interface 316 for normal FPGA operation. The TDI
and TCK signals from the JTAG interface are provided to
system logic 326, and the TDO signal received from system
logic 326 is provided to JTAG interface 316.
Multiple SPI Boot PROM Architecture

FIG. 6 shows a block diagram of an exemplary architecture
610 in a second embodiment of the present invention, for
permitting multiple JTAG-noncompliant boot PROMs to be
programmed in a daisy-chain formation using a plurality of
FPGAs. As shown, this exemplary embodiment includes a
JTAG chain of three FPGAs 612-1, 612-2, 612-3 connected to
two boot PROMs 620-1, 620-2 at their respective SPI inter
faces 614-1, 614-2. For ease of reference, the details of the
JTAG and SPI ports of FPGAs 612-1, 612-2 are not shown,
since such details are provided in FIG.3 and its correspond
ing description above. FPGA 612-3 may bean FPGA consis
tent with the invention, as shown in FIG. 3, or may, alterna
tively, be a legacy or conventional FPGA, e.g., as shown in
FIG 1 or 2.

In this exemplary embodiment, FPGA 612-1 is used to
program PROM 620-1, and FPGA 612-2 is used to program
PROM 620-2. PROM 620-1 serves as the boot PROM for
FPGA 612-1. PROM 620-2 is the boot PROM for both
FPGAs 612-2 and 612-3, where FPGA 612-3 is a slave
device.
The configuration of the JTAG connections and signals of

this embodiment will now be described. The TCK and TMS
inputs of FPGAs 612-1, 612-2, and 612-3 are connected in
parallel, such that all three FPGAs 612-1, 612-2, and 612-3
share the TCK and TMS signals, which are provided by an
external device (not shown). The TDI input from the external
device is provided only to FPGA 612-1, which provides its
TDO signal as the TDI input to FPGA 612-2. Likewise,
FPGA 612-2 provides its TDO signal as the TDI input to
FPGA 612-3. The TDO signal provided by FPGA 612-3 is
provided to the external device.

Although not specifically shown in FIG. 6, the signals
provided by the JTAG interface of FPGA 612-1 to the SPI
interface of FPGA 612-1 and the signals provided by the
JTAG interface of FPGA 612-2 to the SPI interface of FPGA
612-2 are the same as those appearing within FPGA 312, as
illustrated in FIG. 3 and described in its corresponding
description above.

Boot PROMs 620-1 and 620-2 are conventional SPI flash
devices, each including a respective SPI interface 614-1, 614
2. SPI interfaces 614-1, 614-2 are connected directly to the
SPI interfaces implemented within FPGAs 612-1 and 612-2,
respectively. The CCLK output of the SPI interface of FPGA
612-2 is also provided to the CCLK input of the SPI interface
of FPGA 612-3 to provide configuration clocking signals.

In this configuration, FPGA 612-2 uses an additional
DOUT pin that is not used on FPGAs 612-1 and 612-3. The
DOUT pin provides a “flow-through.” “bypass,” or “over
flow” signal, such that, when the memory of FPGA 612-2
becomes full while reading in data from boot PROM 620-2,
the excess data is provided to the DI port of the SPI interface
of FPGA 612-3. The DOUT output of FPGA 612-2 is pro
vided directly to the DI input of the SPI interface of FPGA
612-3 and is used to populate FPGA 612-3 with the boot
pattern for FPGA 612-3 stored in boot PROM 620-2. The
foregoing functionality may employ the Serial Configuration
Mode (SCM) of the FPGA 612-2, whereby FPGA 612-2
emulates a boot PROM to the slave device, FPGA 612-3.

With reference to FIGS. 7 and 8, an exemplary method of
programming the SPI flash of boot PROMs 620-1 and 620-2

US 7,397.274 B1
9

of FIG. 6, consistent with one embodiment of the present
invention, will now be described. FIG. 7 shows a block dia
gram of the architecture of FIG. 6 during the programming of
the first PROM 620-1, with the second and third FPGAs
612-2, 612-3 inactive, and FIG. 8 shows a block diagram of
the architecture of FIG. 6 during the programming of the
second PROM 620-2, with the first and third FPGAs 612-1,
612-3 inactive.

Turning first to FIG. 7, the architecture of FIG. 6 is shown
during the programming of PROM 620-1, with FPGAs 612-2
and 612-3 inactive. First, at state Update-IR, a BYPASS
instruction is loaded into FPGAs 612-2 and 612-3, and an
in-system setup instruction ISC Setup is loaded into FPGA
612-1, thereby selecting single-bit BYPASS registers of
FPGAs 612-2 and 612-3 and the CONFIG register of FPGA
612-1. Accordingly, FPGAs 612-2 and 612-3 will operate in
normal operation mode (3) as described above, while FPGA
612-1 is in mode (1), i.e., programming PROM 620-1. Next,
SPI Program enable bit is loaded into the CONFIG register
of FPGA 612-1 at state Shift-DR to enable programming of
boot PROM 620-1. A SPI program instruction SPI Program
is then loaded into FPGA 612-1 at state Update-IR to cause
the following connections to be made between the JTAG and
SPI interfaces of FPGA 612-1:

(a) TDI to BUSY/DI for sending commands and data into
the SPI flash of PROM 620-1:

(b) TCK to CCLK for clocking commands and/or data into
and/or out of the SPI flash of PROM 620-1;

(c) (Shift-DR internal control signal to DI/CSn pin to
enable the programming of PROM 620-1; and

(d) TDO to D7/Q for receiving data from the SPI flash of
PROM 620-1.

Next, by transition to state Shift-DR, the programming of
PROM 620-1 is enabled. A program command and corre
sponding data are then shifted into the SPI flash of PROM
620-1 using signal TDI. Then, by transition to state Exit 1-DR,
the signal CSn is driven high to execute the command. The
foregoing steps of shifting program commands and data into
the SPI flash of PROM 620-1 and executing the commands by
driving the signal CSn high are repeated until programming
and readback is complete. A BYPASS instruction is then
loaded into FPGAs 612-2 and 612-3, and an in-system setup
instruction ISC Setup is loaded into the CONFIG register of
FPGA 612-1 to clear the SPI program enable bit, so that
programming of PROM 620-1 is disabled, and FPGA 612-1
can operate in normal mode (3). After BYPASS instructions
have been loaded into FPGAs 612-2 and 612-3, respectively,
the single-bit BYPASS register is connected between the TDI
and TDO connections of the respective FPGA devices. Effec
tively, the TDO connection of FPGA 612-1 uses two clock
cycles to travel through the single-bit BYPASS register of
FPGA 612-2 and then FPGA 612-3 to reach the TDO con
nection of the external header, where the signal can be read by
the external device (for each device in the daisy chain, an
additional clock cycle is used to flush through the single-bit
BYPASS registers of each device in the chain to reach the last
device in the chain).

Turning now to FIG. 8, the architecture of FIG. 6 is shown
during the programming of PROM 620-2, with FPGAs 612-1
and 612-3 inactive. First, at state Update-IR, a BYPASS
instruction is loaded into FPGAs 612-1 and 612-3, and an
in-system setup instruction ISC Setup is loaded into FPGA
612-2, thereby selecting the single-bit BYPASS registers of
FPGAs 612-1 and 612-3 and the CONFIG register of FPGA
612-2. Accordingly, FPGAs 612-1 and 612-3 will operate in
normal mode (3) while FPGA 612-2 is in mode (1), i.e.,

5

10

15

25

30

35

40

45

50

55

60

65

10
programming PROM 620-2. Next, SPI Program enable bit
is loaded into the CONFIG register of FPGA 612-2 at state
Shift-DR to enable programming of PROM 620-2. A SPI
program instruction SPI Program is then loaded into FPGA
612-2 at state Update-IR to cause the following connections
to be made between the JTAG and SPI interfaces of FPGA
612-2:

(a) TDI to BUSY/DI for sending commands and/or data
into and/or out of the SPI flash of PROM 620-2:

(b) TCK to CCLK for clocking commands and data into or
out of the SPI flash of PROM 620-2:

(c) (Shift-DR internal control signal to DI/CSn pin to
enable the programming of PROM 620-2; and

(d) TDO to D7/Q for receiving data from the SPI flash of
PROM 620-2.

Next, by transition to state Shift-DR, the programming of
PROM 620-2 is enabled. A program command and corre
sponding data are then shifted into the SPI flash of PROM
620-2 using signal TDI. Then, by transition to state Exit 1-DR,
the signal CSn is driven high to execute the command. The
foregoing steps of shifting program commands and data into
the SPI flash of PROM 620-2 and executing the commands by
driving the signal CSn high are repeated until programming
and readback is complete. A BYPASS instruction is then
loaded into FPGAs 612-1 and 612-3, and an in-system setup
instruction ISC Setup is loaded into the CONFIG register of
FPGA 612-2 to clear the SPI program enable bit, so that
programming of FPGA 612-2 is disabled, and FPGA 612-2
returns to normal mode (3). After BYPASS instructions have
been loaded into FPGAs 612-1 and 612-3, respectively, the
single-bit BYPASS register is connected between the TDI
and TDO connections of the respective FPGA devices. Effec
tively, the TDI connection of FPGA 612-1 uses an additional
clock cycle to travel through the single-bit BYPASS register
of FPGA 612-1 to reach the TDI connection of FPGA 612-2.
Similarly, the TDO connection of FPGA 612-2 uses one clock
cycle to travel through the single-bit BYPASS register of
FPGA 612-3.

Consequently, PROM 620-1 is ready to be used as a boot
PROM for FPGA 612-1, and PROM 620-2 is ready to be used
as a boot PROM for FPGAS 612-2 and 612-3. PROM 620-1
can send its stored boot pattern to FPGA 612-1 via the respec
tive SPI interfaces of the devices, and PROM 620-2 can send
its stored boot pattern to FPGA 612-2 via the respective SPI
interfaces of the devices. When the memory of FPGA 612-2
is full, i.e., the boot pattern for FPGA 612-2 has been com
pletely transferred to FPGA 612-2, the DOUT pin of FPGA
612-2 provides the overflow data from PROM 620-2 (i.e., the
boot pattern for FPGA 612-3) to the DI pin of the SPI inter
face of FPGA 612-3.

It should be recognized that the foregoing configuration is
not limited to three FPGAs and two boot PROMS, but that
Such a configuration can be analogously extended to archi
tectures having other numbers of FPGAs and/or boot
PROMs. For example, a single boot PROM can be used to
configure more than two FPGAs in a daisy-chain manner.
Moreover, the FPGA devices 612-1, 612-2, and 612-3 can be
arranged in a different order than that described above.
The present invention may also include embodiments in

which the boot PROMs are programmed in parallel. In this
scenario, for the configuration illustrated in FIGS. 7 and 8, an
exemplary ERASE operation, which normally may take
approximately 30 seconds to perform for each device, may
proceed as follows: First, the SPI Program enable bit is
loaded into the CONFIG register to enable programming of
boot PROM 614-1, and a BYPASS instruction is loaded into

US 7,397.274 B1
11

FPGAs 612-2 and 612-3. The state machine steps through to
the Shift-DR state to send the ERASE command to SPI
FLASH 620-1 of boot PROM 620-1 through the TDI connec
tion. The state machine steps through to the Exit-DR state to
drive the /CS signal of SPI FLASH 620-1 high to start the
ERASE procedure. Next, the state machine steps through to
the Shift-IR State to load the BYPASS instruction into FPGA
612-1, the SPI Program enable bit into FPGA 612-2, and
the BYPASS instruction into 612-3. The FCS connection of
SPI FLASH 620-1 remains high, and the ERASE operation
continues. The state machine steps through to the Shift-DR
State to load the ERASE command to SPI FLASH 620-2
through the BYPASS register of FPGA 612-1. The state
machine steps through to the Exit-DR state to drive the /CS
pin of SPI FLASH 620-2 high to start the ERASE procedure.
At this moment, both SPI FLASH devices 620-1 and 620-2
are being erased in parallel. Next, the ERASE STATUS com
mand is loaded into SPI flash 620-2 to determine whether the
ERASE procedure is complete. If not, then the procedure
loops back to repeatedly load ERASE STATUS commands
into SPI flash 620-2 until the ERASE procedure is complete.
Next, the state machine steps through to the Shift-IR state to
load the SPI Program enable bit into FPGA 612-1 and a
BYPASS instruction to FPGAs 612-2 and 612-3. The State
machine steps through to the Shift-DR state. Next, the
ERASE STATUS command is loaded into SPI flash 620-1 to
determine whether the ERASE procedure is complete. If not,
then the procedure loops back to repeatedly load ERASE
STATUS commands into SPI flash 620-1 until the ERASE
procedure is complete. Accordingly, if SPI flash PROMs
620-1 and 620-2 have erase times of 20 and 30 seconds,
respectively, then the resultant erase time will be 30 seconds
when performed in parallel, rather than 50 seconds when
performed sequentially. Although the present invention has
been described in the context of FPGAs, those skilled in the
art will understand that the present invention can be imple
mented in the context of other types of programmable
devices, such as, without limitation, programmable logic
devices (PLDs), mask-programmable gate arrays (MPGAs),
simple programmable logic device (SPLDS), and complex
programmable logic devices (CPLDs). More generally, the
present invention can be implemented in the context of any
kind of electronic device that requires configuration data.

Although the present invention has been described in the
context of embodiments in which serial PROMs are used to
store configuration data, in other embodiments, other types of
memory devices can be used, including (1) other types of
serial memory devices, such as serial random access memory
(RAM) devices, and (2) even non-serial memory devices. For
example, in theory, the present invention could be imple
mented using two or more parallel memory devices to store
configuration data, where each memory device has two (or
more) parallel output data pins that get connected directly to
a corresponding number of pins on the programmable device
being configured. Moreover, data loaded into a PROM or
similar device in alternative embodiments of the invention
may include data other than configuration data. It should also
be understood that memory devices used with the present
invention may have functions other than as boot devices, and
that data transferred between one or more of external
devices, programmable devices, and memory devices may
include types of data other than programmable device con
figuration information.

While embodiments of the present invention are described
herein as employing devices and interfaces compliant with
SPI and JTAG standards, devices and interfaces employed in
alternative embodiments may comply with standards other

10

15

25

30

35

40

45

50

55

60

65

12
than SPI and JTAG, wherein a first interface is compliant with
a first standard, a second interface is compliant with a second
standard, and the second interface is non-compliant with the
first standard.

It should be understood that the steps of the exemplary
methods of programming the SPI flash of boot PROMs using
FPGAs, as set forth herein, are not necessarily required to be
performed in the order described, and the order of the steps of
such methods should be understood to be merely exemplary.
Likewise, additional steps may be included in Such methods,
and certain steps may be omitted or combined, in program
ming methods consistent with various embodiments of the
present invention.

It will be further understood that various changes in the
details, materials, and arrangements of the parts which have
been described and illustrated in order to explain the nature of
this invention may be made by those skilled in the art without
departing from the scope of the invention as expressed in the
following claims.
What is claimed is:
1. A programmable logic device comprising:
a programmable fabric;
a first interface compliant with a first standard and operable

to receive configuration data for programming the fab
ric;

a second interface compliant with a second standard and
operable to receive and transmit configuration data for
programming the fabric; and

dedicated circuitry coupled to the first and second inter
faces and operable to transfer configuration data
received at the first interface in accordance with the first
standard to the second interface for transmission there
from in accordance with the second standard, the dedi
cated circuitry including:
a multiplexerhaving a first input terminal coupled to the

first interface, a second input terminal coupled to the
programmable fabric, an output terminal coupled to
the second interface, and a selection terminal coupled
to receive a control signal from the first interface; and

a demultiplexer having an input terminal coupled to the
second interface, a first output terminal coupled to
transmit signals to the first interface, a second output
terminal coupled to the programmable fabric, and a
selection terminal coupled to receive a control signal
from the first interface.

2. The programmable logic device of claim 1, wherein the
first interface is a JTAG interface compliant with the JTAG
standard.

3. The programmable logic device of claim 1, wherein the
second interface is a SPI interface compliant with the SPI
standard.

4. The programmable logic device of claim 1, wherein the
programmable logic device is part of an electronic system that
also includes an external device coupled to the second inter
face of the programmable logic device, the external device
having an interface compliant with the second standard.

5. The programmable logic device of claim 4, wherein the
external device is a memory device.

6. The programmable logic device of claim 1, wherein the
second interface is non-compliant with the first standard.

7. The programmable logic device of claim 1, wherein:
responsive to a first state of the control signal, the multi

plexer is operable to transfer configuration data from the
first interface to the second interface and the demulti
plexer is operable to transfer a signal from the second
interface to the first interface; and

US 7,397.274 B1
13

responsive to a second state of the control signal, the
demultiplexer is operable to transfer configuration data
from the second interface to the programmable fabric
and the multiplexer is operable to transfer a signal from
the programmable fabric to the second interface.

8. The programmable logic device of claim 1, wherein the
dedicated circuitry includes a second multiplexer having a
first input terminal coupled to the first output terminal of the
demultiplexer, a second input terminal coupled to the pro
grammable fabric, an output terminal coupled to the first
interface, and a selection terminal coupled to receive a control
signal from the first interface.

9. The programmable logic device of claim 8, wherein the
programmable fabric is operable to receive configuration data
from the first interface and, responsive to the control signal,
the second multiplexer is operable to transfer a signal from
the programmable fabric to the first interface.

10. The programmable logic device of claim 1, wherein the
programmable logic device is an FPGA.

11. A method of programming a memory device with con
figuration data for a programmable logic device, comprising:

transmitting configuration data to a first interface of the
programmable logic device, the first interface compliant
with a first standard;

transferring the configuration data from the first interface
through a multiplexer controllable by the first interface
to a second interface of the programmable device with
out configuring the programmable logic device to
couple the interfaces, the second interface compliant
with a second standard; and

transmitting the configuration data from the second inter
face of the programmable logic device to an interface of
the memory device, the memory device interface com
pliant with the second standard.

12. The method of claim 11, wherein the memory device is
a PROM.

13. The method of claim 11, wherein the configuration data
is transmitted to the first interface of the programmable logic
device by automated test equipment transmits.

14. The method of claim 11, wherein the first interface is a
JTAG interface compliant with the JTAG standard.

15. The method of claim 11, wherein the second interface
is a SPI interface compliant with the SPI standard.

5

10

15

25

30

35

40

14
16. The method of claim 11, wherein the memory device is

a first memory device and the programmable logic device is a
first programmable logic device, the method comprising:

transmitting configuration data through the first program
mable logic device to a first interface of a second pro
grammable logic device, the first interface compliant
with a first standard;

transferring the configuration data from the first interface
to a second interface of the second programmable device
without configuring the programmable fabric to couple
the interfaces, the second interface compliant with a
second standard; and

transmitting the configuration data from the second inter
face of the second programmable logic device to an
interface of a second memory device, the second
memory device interface compliant with the second
standard.

17. The method of claim 16, wherein the first and second
programmable logic devices are connected in a daisy chain.

18. A programmable logic device comprising:
a programmable fabric;
a JTAG port operable to receive configuration data for

programming the fabric;
a SPI port operable to receive and transmit configuration

data for programming the fabric; and
circuitry coupled to the JTAG and SPI ports and oper

able, without being configured, to transfer configura
tion data received at the JTAG port to the SPI port, the
circuitry including a multiplexer having a first input
terminal coupled to the first interface, a second input
terminal coupled to the programmable fabric, an out
put terminal coupled to the second interface, and a
selection terminal coupled to receive a control signal
from the first interface.

19. The programmable logic device of claim 18, wherein
the programmable logic device is part of an electronic system
that also includes a SPI flash memory device coupled to the
SPI port of the programmable logic device.

20. The programmable logic device of claim 18 including
a demultiplexer having an input terminal coupled to the sec
ond interface, a first output terminal coupled to transmit sig
nals to the first interface, a second output terminal coupled to
the programmable fabric, and a selection terminal coupled to
receive a control signal from the first interface.

k k k k k

