
(12) United States Patent

USOO7375549B1

(10) Patent No.: US 7,375,549 B1
Tang et al. (45) Date of Patent: May 20, 2008

(54) RECONFIGURATION OF PROGRAMMABLE 6,538,468 B1 3/2003 Moore
LOGIC DEVICES 6,624,656 B1* 9/2003 Fox et al. 326,41

6,704,850 B1 3/2004 Reynolds
(75) Inventors: Howard Tang, San Jose, CA (US); Ju 6,714,041 B1 3/2004 Darling et al.

Shen, San Jose, CA (US); San-Ta Kow, 6,721,840 B1 4/2004 Allegrucci
San Jose, CA (US) 6,732,263 B1 5, 2004 May et al.

s 6,774,668 B1 8/2004 Wirtz, II
6,828,823 B1 12/2004 Tsui et al.

(73) Assignee: Lattice Semiconductor Corporation, 6,851,047 B1 2, 2005 A.
Hillsboro, OR (US) 6,873,177 B1 3/2005 Wennekamp et al.

- 0 7,199,608 B1 * 4/2007 Trimberger 326/38
(*) Notice: Subject to any disclaimer, the term of this 2005. O189962 A1 9/2005 Agrawal et al.

patent is extended or adjusted under 35
U.S.C. 154(b) by 158 days. OTHER PUBLICATIONS

U.S. Appl. No. 10/809,658. Howard Tang.
(21) Appl. No.: 11/350,436 U.S. Appl. No. 1 1/243.255. Howard Tang.

U.S. Appl. No. 1 1/293,941. Howard Tang.
(22) Filed: Feb. 9, 2006 * cited by examiner

(51) Int. Cl. Primary Examiner Vibol Tan
HO3K 9/73 (2006.01) (74) Attorney, Agent, or Firm—MacPherson Kwok Chen &

(52) U.S. Cl. 326/38: 326/40: 714/726; Heid LLP: Brent A. Folsom
714/727

(58) Field of Classification Search 326/38, (57) ABSTRACT

See application file for complete search his." Improved reconfiguration techniques are provided for pro
pp p ry. grammable logic devices (PLDS). For example, in accor

(56) References Cited dance with an embodiment of the present invention, a
U.S. PATENT DOCUMENTS

5,548,228 A 8, 1996 Madurawe
5,640,107 A 6, 1997 Kruse
5,689,516 A 11/1997 Mack et al.
5,696,455 A 12/1997 Madurawe
6,028,449 A 2/2000 Schmitt 326.80
6,049,222 A 4/2000 Lawman
6,150,837 A 11/2000 Beal et al.
6,218,858 B1 * 4/2001 Menon et al. 326/39
6,304,099 B1 10/2001 Tang et al.
6,356,107 B1 3/2002 Tang et al.
6.467,009 B1 10/2002 Winegarden et al.

Prepare for Known State Exit
Mode ShiftD

programmable logic device includes a plurality of logic
blocks, a plurality of input/output blocks and corresponding
input/output pins, and a plurality of configuration memory
cells. The configuration memory cells are adapted to store
configuration data for configuration of the logic blocks and
the input/output blocks. A data port is adapted to provide a
clock signal to and receive configuration data from an
external memory. A plurality of circuits are adapted to hold
the input/output pins in a known logic state during the
configuration.

17 Claims, 10 Drawing Sheets

R To Next Cell Mode 3
1 - Must f------------------------------------- ? = Don't Core State
O 1 = Logical State High

O = Logical State Low
User

Register --------
D o -------------------------- as re-r-----

> f | V | | T { XI/O
--- 606

Input
a Dato O

604 Mode.2. ClockDR UpdateDR
rom Lost Cel.

3. ShiftDR To Next Cell Mode 602

le To User logic C CLK
User

Progrommable
d = Unprogrommed Fuse Logic Areo
= Programmed Fuse

From Lost Cell ClockDR

Pulse CLK to lotch 1
into User Register.

UpdateDR

US 7,375,549 B1 Sheet 1 of 10

SN
RN

N N

May 20, 2008

102

U.S. Patent

100

FIG. 1

FLASH MEMORY

FIG 2

US 7,375,549 B1 Sheet 2 of 10 May 20, 2008 U.S. Patent

í? í?

HSWTH pun016)|Oog

US 7,375,549 B1 Sheet 4 of 10 May 20, 2008 U.S. Patent

9 10[H

EldWWS

US 7,375,549 B1 Sheet 6 of 10 May 20, 2008 U.S. Patent

13.SE?! TW8010 |

US 7,375,549 B1 Sheet 7 of 10 May 20, 2008 U.S. Patent

XI0 | () 909 O/I K))
|

- - - - - - - - - - - -

v on

U.S. Patent May 20, 2008 Sheet 8 of 10 US 7,375,549 B1

900

JTAG Port is Reserved. CPU Toggle PROGRAMN Pin
Only for Board Testing - 940

PROGRAMN

910

TD---M.--
TCK------- Volotile PLD
TMS -------

User IO Pins Are Held By
The Bus Keeper

FIG. 9

1000

l WeOk
Pullup

Bus
1070 Hold 1030

Output
Lotched Value Output Pin

960
Copture Do Do ISCAccess

S 0< S CND
1060 N -- 1020

1010

FIG 10

U.S. Patent May 20, 2008 Sheet 9 of 10 US 7,375,549 B1

JTAG Port is Reserved
Only for Board Testing

CPU To Re-Program
the SP Flash.

920 PROGRAN
TCK------- Volotile PLD

Internal, Jtag
r Soft IP

Internal JTAG Enable; TCK, TMS, TDI, TDO 1104

User IO Pins Are Held By
BSCAN Cells.

FIG 11

JTAG Port is used to
950 915 910 reprogram the SP Flash,

User IO Pins Are Held By
BSCAN Cells,

FIG, 12

U.S. Patent May 20, 2008 Sheet 10 of 10 US 7,375,549 B1

User IOS
Held At

Stotic State
By BSCAN

Cells

US 7,375,549 B1
1.

RECONFIGURATION OF PROGRAMMABLE
LOGIC DEVICES

TECHNICAL FIELD

The present invention relates generally to electrical cir
cuits and, more particularly, to configuration (including
reconfiguration) of programmable logic devices.

BACKGROUND

Programmable logic devices (PLDs), such as field pro
grammable gate arrays (FPGAs) or complex programmable
logic devices (CPLDs), can be used in a variety of applica
tions. PLDs offer the advantage of being reprogrammable
and are typically reprogrammed in the field (e.g., while
remaining on circuit boards in operational environments).

However, a drawback associated with conventional PLDs
is their inability to provide desired logic States (i.e., output
signal values) on input/output pins while being programmed
with new configuration data (i.e., reconfigured). For
example, in applications where a PLD does not provide
onboard non-volatile memory, it is generally necessary to
load new configuration data from an external source into the
onboard configuration memory of the PLD. Unfortunately,
conventional PLDs typically cannot provide predictable
behavior on their output pins while simultaneously loading
new configuration data into onboard volatile memory.
More specifically, a conventional PLD may be in a sleep

state during reconfiguration, wherein input/output pins are
disabled (e.g., non-responsive to input signals while provid
ing indeterminate output signals). Such behavior is generally
unacceptable, especially in applications where the PLD is in
a critical path or is used to control critical functions.
Conventional PLDs can also exhibit glitches in the output
signals provided on the output pins during programming and
immediately after programming. Such glitches are also
unacceptable in critical applications. As a result, there is a
need for improved programming and configuration tech
niques for PLDs.

SUMMARY

In accordance with one embodiment of the present inven
tion, a programmable logic device includes a plurality of
logic blocks; a plurality of input/output blocks and corre
sponding input/output pins; a plurality of configuration
memory cells adapted to store configuration data for con
figuration of the logic blocks and the input/output blocks; a
data port adapted to provide a clock signal to and receive
configuration data from an external memory; and a plurality
of circuits adapted to hold the input/output pins in a known
logic State during the configuration.

In accordance with another embodiment of the present
invention, a method of reconfiguring a programmable logic
device includes triggering a reconfiguration of the program
mable logic device while configuration memory cells of the
programmable logic device are configured with configura
tion data; capturing a plurality of output signal values of the
programmable logic device; providing a clock signal to an
external non-volatile memory; loading reconfiguration data
into the configuration memory cells from the external non
Volatile memory during the providing; and maintaining the
output signal values during the loading.

In accordance with another embodiment of the present
invention, a system includes a programmable logic device
(PLD) having a plurality of configuration memory cells

10

15

25

30

35

40

45

50

55

60

65

2
adapted to store configuration data; means for storing,
external to the programmable logic device, configuration
data for configuring or reconfiguring the programmable
logic device; means for providing a clock signal from the
programmable logic device to the storing means; means for
loading the configuration data into the configuration
memory cells from the storing means based on the clock
signal; and means for maintaining PLD output signal values
during loading of the configuration data.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more
complete understanding of embodiments of the present
invention will be afforded to those skilled in the art, as well
as a realization of additional advantages thereof, by a
consideration of the following detailed description of one or
more embodiments. Reference will be made to the appended
sheets of drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device in accordance with an embodi
ment of the present invention.

FIG. 2 shows a block diagram illustrating exemplary
implementation details for the programmable logic device of
FIG. 1 in accordance with an embodiment of the present
invention.

FIG. 3 shows a flowchart illustrating exemplary opera
tions for the programmable logic device of FIG. 1 in
accordance with an embodiment of the present invention.

FIG. 4 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIG. 5 shows a block diagram illustrating an exemplary
circuit implementation for a portion of the programmable
logic device of FIG. 1 in accordance with an embodiment of
the present invention.

FIGS. 6-8 show block diagrams illustrating exemplary
operations associated with a reconfiguration for the pro
grammable logic device of FIG. 1 in accordance with an
embodiment of the present invention.

FIG. 9 shows a block diagram illustrating a program
mable logic device undergoing a reconfiguration with I/O
pins held by bus keeper circuits in accordance with an
embodiment of the present invention.

FIG. 10 shows a block diagram illustrating an exemplary
circuit implementation for a bus keeper circuit of the pro
grammable logic device of FIG. 9 in accordance with an
embodiment of the present invention.

FIG. 11 shows a block diagram illustrating a program
mable logic device undergoing a reconfiguration with I/O
pins held by boundary scan cells in accordance with an
embodiment of the present invention.

FIG. 12 shows a block diagram illustrating a program
mable logic device undergoing a reconfiguration using a
dedicated JTAG port and having I/O pins held by boundary
scan cells in accordance with an embodiment of the present
invention.

FIG. 13 shows a block diagram illustrating the program
mable logic device of FIG. 1 providing a clock signal while
undergoing a reconfiguration in accordance with an embodi
ment of the present invention.

Embodiments of the present invention and their advan
tages are best understood by referring to the detailed
description that follows. It should be appreciated that like

US 7,375,549 B1
3

reference numerals are used to identify like elements illus
trated in one or more of the figures.

DETAILED DESCRIPTION

FIG. 1 shows a block diagram illustrating an exemplary
programmable logic device (PLD) 100 in accordance with
an embodiment of the present invention. PLD 100 includes
input/output (I/O) blocks 102 and programmable logic
blocks 104, which are used to provide I/O functionality (e.g.,
one or more I/O and/or memory interface standards) and
logic functionality (e.g., LUT-based logic), respectively, for
PLD 100. PLD 100 also includes configuration memory (not
shown explicitly) discussed further herein. PLD 100 may
also include volatile memory 108 (e.g., block SRAM) sepa
rate from configuration memory and clock-related circuitry
110 (e.g., PLL circuits).
PLD 100 also includes one or more data ports 112 and/or

114, which for example may be used for programming
volatile memory 108 of PLD 100. For example, data port
112 may represent a programming port such as a serial
peripheral interface (SPI) interface or central processing unit
(CPU) port, and may also be referred to as a peripheral data
port or a sysCONFIG programming port. Data port 114 may
represent, for example, a programming port Such as a joint
test action group (JTAG) port by employing standards Such
as Institute of Electrical and Electronics Engineers (IEEE)
1149.1 or 1532 standards.

Configuration data stored external to PLD 100 (for
example, in external non-volatile memory) may be trans
ferred to the configuration memory of PLD 100 upon power
up or during reconfiguration of PLD 100. Non-volatile
memory within PLD 100 or external to PLD 100 may also
be used to provide background programming functionality
for PLD 100. For example, for background programming,
PLD 100 may remain in a user mode, based on the configu
ration data stored in configuration memory within PLD 100,
while an external non-volatile memory is programmed with
new configuration data (e.g., a new user defined pattern).
Once the new configuration data is stored in the external
non-volatile memory, this data can be transferred to the
configuration memory of PLD 100 to reconfigure PLD 100,
a process sometimes referred to as refresh.
As explained further herein, the refresh process can be

initiated by a signal or instruction provided to data port 112
or data port 114 (e.g., pulsing data port 112 or providing a
JTAG refresh instruction via data port 114). Furthermore, as
explained further herein in accordance with one or more
embodiments of the present invention, full control of the
logical values of the output signals provided by PLD 100
during the refresh process can still be provided.
As a specific example, FIG. 2 shows a block diagram

illustrating a PLD 200, which provides exemplary imple
mentation details for PLD 100 of FIG. 1 in accordance with
an embodiment of the present invention. PLD 200 includes
configuration memory cells 204, and control logic 206. An
external non-volatile memory 202 may also be provided
separately from PLD 200. It should be understood that
although non-volatile memory 202 is represented as a flash
memory in the exemplary embodiment of FIG. 2, other types
of volatile memory or non-volatile memory (e.g., EEPROM
or EECMOS) that can be reprogrammed once or repeatedly
may be used for non-volatile memory 202.

Configuration memory cells 204 (e.g., volatile SRAM
cells) are used in a conventional manner to store configu
ration data, which determines the user defined functions of
PLD 200 (e.g., determines programmable functions of I/O

10

15

25

30

35

40

45

50

55

60

65

4
blocks 102 and logic blocks 104). Control logic 206 controls
the transfer of the configuration data from non-volatile
memory 202 to configuration memory cells 204, as would be
understood by one skilled in the art.

Either non-volatile memory 202 or configuration memory
cells 204 may be programmed (i.e., receive and store infor
mation in its memory) to store configuration data for PLD
200, but the device functionality of PLD 200 is determined
by the information stored in configuration memory cells
204. Thus, PLD 200 is configured (including reconfiguration
or partial reconfiguration) when information is programmed
into configuration memory cells 204.

It should also be understood, in accordance with one or
more embodiments of the present invention, that configu
ration memory cells 204 may be programmed (including
reprogrammed) via data port 112 or data port 114, depending
upon the desired application or design requirements. Further
details regarding programming may be found in U.S. Pat.
No. 6,828,823 and U.S. Patent Publication No. 2005
0189962-A1, published Sep. 1, 2005.

In general, during programming of configuration memory
cells 204 and reconfiguration of the PLD (e.g., PLD 100), it
would be advantageous to continue to Support system opera
tion functions. However, conventional approaches typically
provide the configuration data to the configuration memory
of the PLD, while the PLD’s output signals are tri-stated or
held to default logical high or low values. In contrast, in
accordance with one or more embodiments of the present
invention, techniques are disclosed herein to provide the
configuration data to the PLD and, during configuration or
reconfiguration (which includes partial reconfiguration),
provide desired PLD output signals that remain glitch-free
during the transition from configuration to user mode of the
PLD.

For example, FIG. 3 shows a flowchart 300 illustrating
exemplary reconfiguration operations for PLD 100 of FIG.
1 in accordance with an embodiment of the present inven
tion. As discussed further herein, the operations illustrated in
flowchart 300 may be controlled by software (e.g., user
Software) or hardware, as illustrated in an exemplary fashion
in FIG. 3 with the corresponding operation flow for the
commands and the exemplary Software control indicators
(user Software start).

For example, Lattice Semiconductor Corporations
ispVM software is a Windows-based tool set that facilitates
the programming of its PLDs. The ispVM Embedded tool
generates C code that, when compiled for and executed on
a wide range of embedded processors, enables the program
ming of the PLDs. Consequently, the ispVM software or
other conventional PLD programming software can issue the
programming commands directly, such as during prototyp
ing, or generate, for example, an industry-standard Serial
Vector Format (SVF) file for reconfiguration in the field.
Thus, for example, the SVF file may be used to control the
background programming, leave alone operation, refresh
process, and the known-state exit operation (e.g., create a
delay period for users to apply the vectors to precondition
the registers), which are described further herein.

In reference to FIG. 3, background programming is first
initiated (302), while the PLD remains in user mode opera
tion with the current configuration data. For example, back
ground programming of non-volatile memory 202 with the
new configuration data is performed as the PLD operates
based on current configuration data stored in configuration
memory cells 204. The background programming may be
verified prior to initiating the capture of the I/O states (e.g.,
current I/O values, such as logical high or low, high imped

US 7,375,549 B1
5

ance values, or sampled) at operation 304. Optionally, the
I/O states may be altered as desired by a user, as explained
further herein (e.g., via input paths through boundary scan
cells in the PLD by manipulating pins via an external device
or through JTAG).

Using the boundary scan cells at operation 306, the I/O
states are held at the captured or desired values and the PLD
is reconfigured or refreshed (308) by copying the configu
ration data from non-volatile memory 202 to configuration
memory cells 204. The reconfiguration may be initiated, for
example, by pulsing or toggling data port 112 or providing
a JTAG instruction (Refresh) to data port 114.
The refresh process may be verified prior to initiating the

release of the I/O to the newly configured user-defined logic
(operation 310). Optionally, internal registers within the I/O
or other portions of the PLD may be preconditioned with
data to prevent glitches from occurring during the transition
to user-defined logic control of the I/O (e.g., the data for
preconditioning provided via input paths through the bound
ary Scan cells). After providing the JTAG instruction (e.g.,
BYPASS or EXIT EXTEST), the PLD is now configured
and operating based upon the new configuration data, with
the I/O output signals under control of the newly configured
user logic of the PLD. Furthermore, if the internal registers
were preconditioned, the logic outputs exit in the desired
state determined by the inputs to the user control logic.
The techniques illustrated may also be referred to herein

by the operations of “leave alone I/O and “known-state
exit.' The leave alone I/O operation refers to the ability,
while the PLD is refreshed, to hold the state of the I/O output
pins in a known logic state (e.g., generally operations 304
through 306 of flowchart 300). The known state may be
based on the I/O values captured or based on a known
system vector that is provided to set the I/O values based on
user-predefined settings (dynamic leave alone). Thus, the
leave alone I/O allows critical signals (e.g., reset and power
enable signals provided by the PLD in a system) to not glitch
and to not go active (e.g., float or provide undesired values)
while the PLD is reconfigured.

The known state exit operation refers to the updating of
some or all of the internal register states with predefined
values (e.g., the optional portion of operation 310 of flow
chart 300). The values may be provided via I/O pins and
input paths through the boundary scan (BSCAN) cells (e.g.,
as discussed in reference to FIGS. 4 and 5). This operation
is useful when the PLD logic that provides the value for the
I/O pin may be in a state that would cause the I/O pin to pass
through a glitch or inappropriate signal level (e.g., glitch or
active level). Thus, the PLD exits to user-defined operation
after reconfiguration in a known logic state.
The leave alone operation may be implemented, for

example, by using the BSCAN cells within the PLD to
capture current I/O pin output states and/or optionally over
lay with a custom I/O vector to set desired I/O pin output
values. For example, FIGS. 4 and 5 show exemplary block
diagram implementations for BSCAN circuits 400 and 500,
respectively, for I/O blocks 102 of PLD 100 of FIG. 1 in
accordance with an embodiment of the present invention.
BSCAN circuit 400 (BSCAN cell) illustrates that one or

more BSCAN registers may be used to store the sampled I/O
value to provide as an output signal via an I/O pin (e.g.,
using the JTAG instruction SAMPLE provided via data port
114 to place output states in BSCAN cell preload registers)
and/or overlay a custom vector of user-defined values to
provide as the output signal via the I/O pin (e.g., using the
JTAG instruction PRELOAD). If custom vector values are
provided, these can be preloaded into the PLD just prior to

10

15

25

30

35

40

45

50

55

60

65

6
the refresh process (e.g., during operation 304 of flowchart
300). The I/O control can then be transferred to BSCAN
circuit 400 (e.g., by using the JTAG instruction EXTEST),
with the dotted path and bold arrow illustrating I/O values
provided to the I/O pin based on custom vector values or
captured I/O values.
BSCAN circuit 500 illustrates another exemplary circuit

implementation, in accordance with an embodiment of the
present invention, for a BSCAN cell. As an example,
BSCAN circuit 500 shows an exemplary input path 502 via
the I/O pin, where input path 502 is not blocked by BSCAN
circuit 500 and is always available as an input path for
providing data into the PLD (e.g., before the refresh process
to provide desired I/O values or after the refresh process to
precondition internal registers with desired values). Conse
quently, data and other information may be provided via the
input path to user logic and/or registers within the PLD (e.g.,
to provide values for the known-state exit operation).

FIG. 5 further provides a table providing various multi
plexer control signal values (e.g., for control signals
Mode 1, Mode 2, and Mode 3) for corresponding JTAG
instructions. Note, for example, that input path 502 is always
available through a multiplexer controlled by the Mode 2
control signal for the exemplary JTAG instructions, except
for the JTAG INTEST instruction. Further additional details
regarding exemplary BSCAN circuits and operation may be
found, for example, in U.S. Pat. Nos. 6,304,099 and 6.356,
107.
FIGS. 6-8 show block diagrams illustrating exemplary

operations associated with a reconfiguration for PLD 100 of
FIG. 1 in accordance with an embodiment of the present
invention. Specifically, FIGS. 6-8 show an exemplary
BSCAN circuit 602 (e.g., similar to BSCAN circuit 500) and
a portion of a user programmable logic area 604 of PLD 100.

For example, FIG. 6 shows PLD 100 operating in a user
mode of operation prior to the refresh operation. The logical
states stored in BSCAN circuit 602 may be unknown (or
don't care state as indicated by the question mark) and a user
register 606 within logic area 604 may store a logical high
value (i.e., a “1”), which user register 606 provides to an I/O
pin 608, as shown by the dotted path. It should also be noted
that some fuses (e.g., configuration memory cells 204) may
be programmed and others may not be programmed within
logic area 604, as shown.

FIG. 7 shows PLD 100 during the refresh process. For this
example, BSCAN circuit 602 has captured and maintained
the logical high value on I/O pin 608 (as shown by the
exemplary dotted path), while logic area 604 is being
programmed. Thus, during the refresh operation, the fuses
within logic area 604 are at Some point in an un-programmed
state. For example, if the fuse is for a connection, then an
un-programmed fuse means no connection.

Furthermore, user register 606 in logic area 604 may not
be accessible and may store an unknown value, as shown in
FIG. 7. For example, a clock signal provided to user register
606 via a clock pin (CLK) may not be externally held low
to maintain the logical high value in user register 606 during
the refresh operation. As another example, if the fuse
connecting the reset (R) terminal of user register 606 to a
global reset signal is programmed, the logical high value
stored in user register 606 may be reset to a logical low value
when the global reset signal is asserted during the refresh
operation.

Alternatively as an example, if the global reset signal is
hardwired to the reset terminal of user register 606 and the
global reset signal is asserted during the refresh process,
then user register 606 will store a logical low value rather

US 7,375,549 B1
7

than the desired logical high value. Consequently, the
known-state exit operation would be required to restore the
logical high value in user register 606 and avoid output
signal glitches when releasing control of the I/O pin to the
new user-defined logic.

FIG. 8 shows PLD 100 after the refresh process and with
a known-state exit. User register 606 within logic area 604
has been preconditioned (i.e., preloaded) with a desired
logical high value, as shown by the dotted input path, so that
the logical high value on I/O pin 608 is maintained glitch
free when user mode of operation resumes. This is possible
because the appropriate fuses within logic area 604 have
been programmed by the refresh process to provide the
proper connections to access user register 606 within logic
area 604. Consequently, before transitioning to the user
mode of operation and releasing control of I/O pin 608 to the
user-defined logic, the appropriate value may be provided
via BSCAN circuit 602 to user register 606 within logic area
604. User register 606, in turn, provides the appropriate
value to I/O pin 608 when the user mode of operation
CSU.S.

As previously discussed, configuration data can be pro
vided to PLD 100 from non-volatile memory 202 external to
PLD 100. As will be further discussed herein, the configu
ration and reconfiguration of PLD 100 can be performed in
accordance with various approaches.

In one approach, configuration data may be loaded into
configuration memory of PLD 100 from an external non
volatile memory through a data port while I/O pins are held
at desired logic states by bus keeper circuits. In another
approach, configuration data may be loaded into configura
tion memory of PLD 100 from an external non-volatile
memory through a data port while I/O pins are held at
desired logic states by boundary scan cells in response to
JTAG instructions received at I/O pins configured to operate
as a JTAG port. In another approach, configuration data may
be loaded into configuration memory of PLD 100 from an
external non-volatile memory through a data port while I/O
pins are held at desired logic states by boundary scan cells
in response to JTAG instructions received at a dedicated
JTAG port.

FIG.9 shows a block diagram 900 illustrating a PLD 910
(for example, PLD 100) undergoing a reconfiguration with
I/O pins held by bus keeper circuits in accordance with an
embodiment of the present invention.
As illustrated, a non-volatile memory 920 (for example, a

flash memory implemented with a SPI interface) is in
communication with PLD 910 through a user-configurable
programming port 930 such as a sysCONFIG programming

10

15

25

30

35

40

45

8
port configured as a serial peripheral interface (SPI) port. An
external processor 950 (e.g., a CPU) is in communication
with PLD 910 through a programming pin 940, and may also
be in communication with non-volatile memory 920 to
program and reprogram configuration data into non-volatile
memory 920 (i.e., to perform background programming).
Optionally, non-volatile memory 920 may be provided as
part of processor 950. PLD 910 and processor 950 may
include optional dedicated JTAG ports 915 and 955, respec
tively, which are not used in the embodiment of FIG.9. PLD
910 also includes a plurality of I/O pins 960 associated, for
example, with I/O blocks 102, which can be configured to
provide output signal values (i.e., logic states) and/or new
input signal values during operation of PLD 910.

FIG. 10 shows a block diagram illustrating an exemplary
circuit implementation for a bus keeper circuit 1000 for PLD
910 in accordance with an embodiment of the present
invention. PLD 910 can include, for example, bus keeper
circuits 1000 for each I/O pin of I/O pins 960.
When PLD 910 is operated in user mode, a logic state

value is provided to output bus 1070 from logic blocks of
PLD 910 (for example, programmable logic blocks 104) and
passed through multiplexer 1050 to an associated I/O pin
960. Latch 1010 captures the logic state presently provided
to I/O pin 960 when capture signal 1060 is asserted. As a
result, when PLD 910 enters programming mode (for
example, in response to processor 950 toggling program
ming pin 940), ISC Access signal 1020 can be asserted,
causing the logic state of latch 1010 to be provided to an
associated I/O pin 960.
As illustrated, bus keeper circuit 1000 further includes a

weak pullup resistor 1030 as well as a weak pulldown
resistor 1040. It will be appreciated that resistors 1030 and
1040 permit bus keeper circuit 1000 to maintain logical high
or logical low States at I/O pin 960 during programming
mode. However, the use of resistors 1030 and 1040 also
permits the latched logic state provided by latch 1010 to be
overridden by external signals driven into I/O pin 960 if
desired in order to, for example, precondition registers in a
logic area of PLD 910 to support the known state exit
operation previously described herein. In this regard, it will
be appreciated that, in various embodiments, output pin 960
of bus keeper circuit 1000 may be connected with input path
502 of FIG. 5 previously described herein.

Table 1 below illustrates exemplary operations associated
with the reconfiguration of PLD 910 in FIG.9 in accordance
with an embodiment of the present invention.

TABLE 1.

NDR Flow

Procedures Non-JTAG Flow (without soft-IP

(Set CFGx to SPI mode or User
Steps others) User IO sysCONFIG. Registers EBR

1 POR Power Up Device To SPI Mode. Tri-State Unused Dual-purpose Reset Unknown
2 Configuration Boot from SPI Flash. The NDR bit IO's Tri-State. SPI Initialized

is set to 1. interface active
3 Wake-UP Enter User Mode User Mode Dual-purpose Pins are User User Mode
4 Re-Program SPI CPU Re-Program the SPI Flash user IO's. SPI interface Mode

to new pattern directly. Inactive.
5 Re-Configure the CPU toggle PROGRAMIN pin Outputs = SPI interface active, Reset Unknown

PLD Clear All latches. others Tri-Stated. Initialized
Configure the device by the Inputs
bitstream in the SPI Flash remain

US 7,375,549 B1

TABLE 1-continued

10

NDR Flow

Procedures

(Set CFGx to SPI mode or
Steps others) User IO

6 Wake Up Use the user clock to stage the active.
wake-up sequence. Keep the GOE
aSSert.

7 Known State Exit Clock the user registers to the
Known State.

8 Device. In User De-assert the GOE to release the User Mode
Mode IO's from latches to user logic.

Turning now to the steps of Table 1, a power-on reset
(POR) operation is initially performed (step 1) and configu
ration data is loaded from non-volatile memory 920 into
configuration memory of PLD 910 (step 2). During these
operations, I/O pins 960 are tri-stated and programming port
930 operates as an SPI interface.
PLD 910 then enters a user mode wherein I/O pins 960

operate in accordance with the configuration data loaded
into PLD 910 (step 3). If it is desired to reconfigure PLD
910, then processor 950 may reprogram non-volatile
memory 920 with new configuration data (step 4). Processor
950 then reconfigures PLD 910 (step 5) by toggling pro
gramming pin 940 of PLD 910, clearing the configuration
memory of PLD 910, and loading the new configuration data
from non-volatile memory 920 into the configuration
memory of PLD 910 through programming port 930. During
the reconfiguration process, the output signal values (i.e.,
logic states) of I/O pins 960 are maintained by bus keeper
circuits 1000 which operate as previously described.

Following the reconfiguration of PLD 910, a staged wake
up process (step 6) and, if desired, known State exit process
(step 7) are performed while logic states of I/O pins 960
continue to be maintained by bus keeper circuits 1000.
During the known state exit process, external signals may be
optionally driven into I/O pins 960 to override bus keeper
circuits 1000 and precondition registers of PLD 910. PLD
910 then returns to user mode wherein I/O pins 960 operate
in accordance with the new configuration data (step 8).

Non-JTAG Flow (without Soft-IP

User
sysCONFIG. Registers EBR

SPI interface inactive. User User Mode
Others Tri-Stated. Mode

Dual-purpose pin are
user IO's. SPI interface
inactive.

25

30

35

40

FIG. 11 shows a block diagram illustrating PLD 910
undergoing a reconfiguration with I/O pins held by boundary
scan cells in accordance with an embodiment of the present
invention. As illustrated, non-volatile memory 920 is in
communication with PLD 910 through user-configurable
programming port 930.

External processor 950 is in communication with non
Volatile memory 920 to program and reprogram configura
tion data into non-volatile memory 920. Processor 950 is
further in communication with PLD 910 through program
ming pin 940, as well as through a plurality of I/O pins 1104
associated, for example, with I/O blocks 102, which are
configured to emulate a JTAG interface. PLD 910 is imple
mented (e.g., programmed) to include a soft IP core 1102 to
provide internal JTAG functionality at I/O pins 1104.
PLD 910 and processor 950 may include optional dedi

cated JTAG ports 915 and 955, respectively, which are not
used in the embodiment of FIG. 11. PLD 910 also includes
I/O pins 960 which can be configured to provide output
signal values during operation of PLD 910. In one embodi
ment, soft IP core 1102 can provide additional functionality
for multiplexing various I/O pins of PLD 910 to operate as
I/O pins 960 or I/O pins 1104.

Table 2 below illustrates exemplary operations associated
with the reconfiguration of PLD 910 in FIG. 11 in accor
dance with an embodiment of the present invention.

TABLE 2

NDR Flow

Procedures Non-JTAG Flow (without Soft-IP

(Set CFGx to SPI mode or User
Steps others) User IO sysCONFIG. Registers EBR

1 POR Power Up Device To SCM Mode. Tri-State Unused Dual- Reset Unknown
Configuration Boot up from SPI Flash. purpose IO's Tri- Initialized

State. SPI interface
active

3 Wake-UP Enter User Mode User Dual-purpose Pins User User Mode
4 Re-Program SPI to CPU Re-Program the SPI Flash directly. Mode are user IO's. SPI Mode

new pattern interface Inactive.
5 Capture IO State Use JTAG SAMPLE instruction via

Into BSCAN Cells Soft-IP.
6 Preload The Use JTAG PRELOAD instruction via

BSCAN Cells Soft-IP.
7 Re-Configure the CPU Toggle PROGRAMIN pin. Outputs SPI interface active, Reset Unknown

PLD Clear All governed others Tri-Stated. Initialized
Configure the device through the by
bitstream in the SPI Flash. BSCAN.

US 7,375,549 B1
11

TABLE 2-continued

12

NDR Flow

Procedures

(Set CFGx to SPI mode or
Steps others) User IO

8 Wake-Up Use the user clock to stage the wake-up Inputs
sequence. Keep the GOE assert. remain

active.
9 Known State Exit Clock the user registers to the

Known State.
10 Device In User De-assert the GOE to release the IO's User

Mode from latches to user logic. Mode

Turning now to the steps of Table 2, a power-on reset
(POR) operation is initially performed (step 1) and configu
ration data is loaded from non-volatile memory 920 into
configuration memory of PLD 920 (step 2). During these
operations, I/O pins 960 are tri-stated and programming port
930 operates as an SPI interface.
PLD 910 then enters a user mode wherein I/O pins 960

operate in accordance with the configuration data loaded
into PLD 910 (step 3). If it is desired to reconfigure PLD
910, then processor 950 may reprogram non-volatile
memory 920 with new configuration data (step 4). The logic
states of I/O pins 960 are captured (step 5) and boundary
scan cells are preloaded (step 6) in response to JTAG
instructions supported by soft IP core 1102.

Processor 950 then reconfigures PLD 910 (step 7) by
toggling programming pin 940 of PLD 910, clearing the
configuration memory of PLD 910, and loading the new
configuration data from non-volatile memory 920 into the
configuration memory of PLD 910 through programming
port 930. During the reconfiguration process, the output
signal values of I/O pins 960 are maintained by boundary
scan cells.

Following the reconfiguration of PLD 910, a staged wake
up process (step 8) and an optional known state exit process

25

30

35

40

Non-JTAG Flow (without soft-IP

User
sysCONFIG. Registers EBR

User User Mode
Mode

Dual-purpose pins
are user IOS. SCM
interface inactive.

(step 9) are performed while logic states of I/O pins 910
continue to be maintained by boundary scan cells. PLD 910
then returns to user mode wherein I/O pins 960 operate in
accordance with the new configuration data (step 10).

FIG. 12 shows a block diagram 1200 illustrating PLD 910
undergoing a reconfiguration using a dedicated JTAG port
and having I/O pins held by boundary scan cells in accor
dance with an embodiment of the present invention. As
illustrated, non-volatile memory 920 is in communication
with PLD 910 through user-configurable programming port
930. Configuration data can be programmed and repro
grammed into non-volatile memory 920 through JTAG
interface 915 of PLD 910.

PLD 910 also includes I/O pins 960 which can be con
figured to provide output signal values during operation of
PLD 910. External processor 950 is in communication with
PLD910 through dedicated JTAG interface 915 of PLD 910.
As illustrated, processor 950 also includes dedicated JTAG
interface 955 to support dedicated JTAG functionality and is
in communication with JTAG interface 915 of PLD 910.

Table 3 below illustrates exemplary operations associated
with the reconfiguration of PLD 910 in FIG. 12 in accor
dance with an embodiment of the present invention.

TABLE 3

NDR Flow

Procedures Mixed (non-JTAG and JTAG) Flow

(Set CFGx to SPI mode or User
Steps others) User IO sysCONFIG. Registers EBR

1 POR Power Up Device To SCM Mode Tri-State Unused Dual- Reset Unknown
Configuration Boot from SPI Flash. purpose IO's Tri- Initialized

State. SPI interface
active

3 Wake-UP Enter User Mode User Dual-purpose Pins User User
4 Re-Program SPI to Re-Program the SPI Flash through the Mode are user IO's. SPI Mode Mode

new pattern TAG SPI PROGRAM instruction interface Inactive.
5 Capture IO State Use JTAG SAMPLE instruction

Into BSCAN Cells
6 Preload The BSCAN Use JTAG PRELOAD instruction

Cells
7 Re-Configure the Use JTAG Refresh instruction to trigger Outputs SPI interface active, Reset Unknown

PLD he re-configuration. governed by others Tri-State. Initialized
Clear All BSCAN.
Configure the device through the Inputs
bitstream in the SPI Flash. remain

8 Wake-Up Use the user clock to stage the wake-up active. User User
sequence. Keep the GOE assert. Mode Mode

US 7,375,549 B1
13

TABLE 3-continued

14

NDR Flow

Procedures

(Set CFGx to SPI mode or
Steps others) User IO

9 Known State Exit Clock the user registers to the
Known State.

10 Device In User De-assert the GOE to release the IO's User
Mode from latches to user logic. Mode

15
Turning now to the steps of Table 3, a power-on reset

(POR) operation is initially performed (step 1) and configu
ration data is loaded from non-volatile memory 920 into
configuration memory of PLD 910 (step 2). During these
operations, I/O pins 960 are tri-stated and programming port
930 operates as an SPI interface.
PLD 910 then enters a user mode wherein I/O pins 960

operate in accordance with the configuration data loaded
into PLD 910 (step 3). If it is desired to reconfigure PLD
910, then non-volatile memory 920 may be reprogrammed
with new configuration data through appropriate informa
tion provided to JTAG interface 915, such as a JTAG
SPI PROGRAM instruction (step 4). The logic states of I/O
pins 960 are captured (step 5) and boundary scan cells are
preloaded (step 6) in response to JTAG instructions.

In response to a JTAG instruction (for example, a JTAG
Refresh instruction) received by JTAG interface 915 of PLD
910, reconfiguration of PLD 910 is triggered, configuration
memory of PLD 910 is cleared, and new configuration data
is loaded from non-volatile memory 920 into the configu
ration memory of PLD 910 through programming port 930
(step 7). During the reconfiguration process, the output
signal values of I/O pins 960 are maintained by boundary
scan cells.

Following the reconfiguration of PLD 910, a staged wake
up process (step 8) and an optional known state exit process
(step 9) are performed while logic states of I/O pins 960
continue to be maintained by boundary 960 operating in
accordance with the new configuration data (step 10).

FIG. 13 shows a block diagram 1300 illustrating PLD 910
providing a clock signal while undergoing a reconfiguration
in accordance with an embodiment of the present invention.
Non-volatile memory 920 is illustrated in communication
with PLD 910 through programming port 930 providing

Programming Mode

Step 1 POR and Boot Up.
Step 2 X PROGRAM ENABLE
Step 3

Personality I/O Type
Latches States

In Edit
Mode

25

30

35

40

45

Non-JTAG

Mixed (non-JTAG and JTAG) Flow

User
sysCONFIG. Registers EBR

Dual-purpose pins
are user IOS. SCM
interface inactive.

support for SPI signals 1306 between PLD 910 and non
volatile memory 920. I/O pins 960 can be configured to
provide output data during operation of PLD 910.

During reconfiguration of PLD 910, configuration data
1302 can be provided to PLD 910 through programming
port 930 (i.e., sysCONFIG port). Advantageously, PLD 910
can continue to provide a clock signal 1304 to non-volatile
memory 920 while configuration data 1302 is simulta
neously loaded into configuration cells of PLD 910. In
accordance with one or more of the previously discussed
embodiments, boundary scan cells or bus keeper circuits of
PLD 910 can maintain the states of I/O pins 960 while
configuration data 1302 is loaded in the embodiment of FIG.
13.

In one embodiment, PLD 910 can be implemented to
Support a master mode and a slave mode at programming
port 930. For example, in master mode (i.e., an SPI mode),
PLD 910 can provide a chip select signal to non-volatile
memory 920 and provide clock signal 1304 (i.e., a program
ming clock) to clock an appropriate read opcode to non
volatile memory 920 and thereafter clock (i.e., synchronize)
the loading of configuration data from non-volatile memory
920 to configuration memory cells of PLD 910. Clock signal
1304 may be provided by a dedicated configuration clock of
PLD 910 which is driven by a free running oscillator (not
shown) of PLD 910. In slave mode (i.e., a CPU mode), the
loading of configuration data can be clocked by a program
ming clock received by PLD 910 from processor 950. The
master or slave mode of PLD 910 can be determined by the
setting of one or more configuration mode pins of PLD 910,
such as a CFGX pin of data port 910 as identified in Table
4 below which identifies the behavior of a plurality of pins
of PLD 100 of FIG. 1 in accordance with an embodiment of
the present invention.

TABLE 4

Comments

Action

Device in User Mode.

SAMPLE/PRELOAD optional.
REFRESH is a JTAG instruction
Non-TAG

Programming
Mode is

determined by the
CFGx setting.

POR and Boot Up.
X PROGRAM ENABLE
Toggle PROGRAMN in

SCM PCM SPI

User IOS

US 7,375,549 B1
15 16

TABLE 4-continued

Programming Mode Non-JTAG Comments

Yes BSCAN fC) BSCAN BSCAN BSCAN Outputs governed by BSCAN.
sysCONFIG.

CCLK Master NA ri-State fC) Output Output Output CCLK is output.
Slave NA ri-State fC) Input nput Manufact. CCLK is input.

DONE DONE fC) DONE DONE DONE Maintain DONE pin function.
NITN INITN fC) INITN NITN INITN Maintain INITN function.
CSN No Tri-State nput Tri-State CSN Tri-State
CS1N No Tri-State nput Tri-State CS1N Tri-State
DO No Tri-State fC) Tri-State DO Z/Speed Speed = 0,1 selects OXOB, 0x03.
D1 No Tri-State fC) Tri-State D1 Z.
D2 No Tri-State fC) Tri-State D2 Z.
D3 No Tri-State fC) Tri-State D3 Z.
D4 No Tri-State fC) Tri-State D4 Z.
D5 No Tri-State fC) Tri-State D5 Z.
D6 No Tri-State fC) Tri-State D6 Z/SPID1 Multi task pin.
D7 No Tri-State fC) Tri-State D7 Z/SPIDO Multi task pin.
RW No Tri-State nput Tri-State RW Tri-State The READ/WRITEN pin.
BUSY No Tri-State Output Tri-State BUSY SISPI Multi task pin.
DI No Tri-State nput DI Tri-State CSSPIO Multi task pin.
Dout No Tri-State Output Dout CSO Dout Multi task pin.
CFGx CFGx nput CFGx Maintain CFGx function
PROGRAMN PROGRAMN Input PROGRAMN Maintain PROGRAMN pin function.

Notes:
. The CCLK pin is no longer a dedicated sysCONFIG port pin. User are allowed to use the pin as the CCLK pin to program the SPI
Flash devices through the JTAG port or through the soft-IP.
Legend:
Z = Tri-State with no pull-up.
Tri-State = Tri-State with pull-up.
BSCAN = The IO is governed by the content of the BSCAN cell.

It will be appreciated that exemplary operational charac
teristics of I/O blocks 102 (User IO’s) and data port 112
(sysCONFIG) are provided in Table 4. In particular, in
addition to SPI devices, the sysCONFIG port may be
optionally configured to interface with external devices,
Such as non-volatile memories, Supporting Serial Configu
ration Mode (SCM) (i.e., loading 1 bit of configuration data
per programming clock cycle) or Parallel Configuration
Mode (PCM) (i.e., loading 8 or more bits of configuration
data per programming clock cycle), or SPI interfaces.
Advantageously, by configuring a sysCONFIG port as an
SPI interface, configuration data can be quickly loaded (for
example, clocked at approximately 50 MHz) into configu
ration memory cells of a PLD faster than by using a
dedicated JTAG port (for example, clocked at approximately
25 MHz).

Systems and methods are disclosed herein to provide
reconfiguration techniques for PLDs. For example, in accor
dance with an embodiment of the present invention, tech
niques are disclosed to provide transparent field reconfigu
ration such that the PLD can be reconfigured without
interrupting system operation (e.g., to provide dynamic
programming of programmable devices with embedded
volatile fuses (e.g., configuration SRAM) for a minimally
disruptive reconfiguration solution for the PLD).

In general, many system designs, within which the PLD
operates, require 99.999% up-time. For example, by using
background programming and/or a sysCONFIG port, the
PLD continues to operate while the external bitstream is
loaded into non-volatile memory. Furthermore, by driving
glitch-free known values as output signals via the I/O
circuits, the PLD can provide valuable functionality to the
system in which it operates, such as to continue to provide
power enable, reset, or other critical signals (e.g., which may
be used to bring up the system) while the PLD is reconfig
ured (e.g., in an on-the-fly reconfiguration procedure). Thus,

30

35

40

45

50

55

60

65

techniques are disclosed herein to control the state of the
logic within the PLD prior to and following the configura
tion process, which allows the device logic to drive the
correct levels on its outputs immediately, when control of
I/O is passed back to the PLD logic at the end of the
configuration cycle.

Embodiments described above illustrate but do not limit
the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the
scope of the invention is defined only by the following
claims.

What is claimed is:
1. A programmable logic device comprising:
a plurality of logic blocks;
a plurality of input/output blocks and corresponding

input/output pins, wherein the plurality of input/output
pins are adapted to receive input data to store within the
programmable logic device to provide a known state
exit;

a plurality of configuration memory cells adapted to store
configuration data for configuration of the logic blocks
and the input/output blocks;

a data port adapted to provide a clock signal to and receive
configuration data from an external memory; and

a plurality of circuits adapted to hold the input/output pins
in a known logic state during the configuration.

2. The programmable logic device of claim 1, wherein the
data port is further adapted to load the configuration data to
the configuration memory cells.

3. The programmable logic device of claim 1, wherein
each one of the circuits comprises a latch coupled to a pullup
resistor and a pulldown resistor.

4. The programmable logic device of claim 1, wherein the
plurality of circuits comprises:

US 7,375,549 B1
17

a plurality of bus keeper circuits; and
a plurality of boundary scan cells.
5. The programmable logic device of claim 1, further

comprising a soft IP core stored in the configuration memory
cells and adapted to configure a JTAG port adapted to
receive instructions for the circuits to hold the input/output
pins in the known logic state.

6. The programmable logic device of claim 1, further
comprising a dedicated JTAG port adapted to receive
instructions for the circuits to hold the input/output pins in
the known logic state.

7. The programmable logic device of claim 1, further
comprising:

a plurality of registers within a logic area of the program
mable logic device; and

an input path from at least one of the input/output pins to
at least one of the registers to precondition the at least
one of the registers with a desired signal value.

8. The programmable logic device of claim 1, further
comprising a plurality of registers, within a logic area of the
programmable logic device, adapted to prevent glitches
from being provided by the input/output blocks after the
configuration.

9. The programmable logic device of claim 1, wherein the
external memory is a flash memory.

10. The programmable logic device of claim 1, wherein
the data port is configured as a serial peripheral interface
(SPI) port.

11. A method of reconfiguring a programmable logic
device, the method comprising:

triggering a reconfiguration of the programmable logic
device while configuration memory cells of the pro
grammable logic device are configured with configu
ration data;

capturing a plurality of output signal values of the pro
grammable logic device;

providing a clock signal to an external non-volatile
memory;

loading reconfiguration data into the configuration
memory cells from the external non-volatile memory
during the providing:

10

15

25

30

35

40

18
maintaining the output signal values during the loading:

and

performing a known State exit operation for the program
mable logic device.

12. The method of claim 11, further comprising program
ming the external non-volatile memory with the reconfigu
ration data prior to the triggering.

13. The method of claim 11, wherein the capturing is
performed in response to a JTAG instruction.

14. The method of claim 11, further comprising providing
input data to the programmable logic device after the
loading to precondition registers with the input data.

15. A system comprising:
a programmable logic device (PLD) having a plurality of

configuration memory cells adapted to store configu
ration data;

means for storing, external to the programmable logic
device, configuration data for configuring or reconfig
uring the programmable logic device;

means for providing a clock signal from the program
mable logic device to the storing means;

means for loading the configuration data into the configu
ration memory cells from the storing means based on
the clock signal;

means for maintaining PLD output signal values during
loading of the configuration data; and

means for capturing a plurality of output signal values of
the programmable logic device.

16. The system of claim 15, further comprising means for
controlling the programmable logic device and the storing
means for configuring or reconfiguring the programmable
logic device.

17. The system of claim 15, further comprising means for
programming the configuration data into the storing means.

