
US007215139B2

(12) United States Patent (10) Patent No.: US 7,215,139 B2
Agrawal et al. (45) Date of Patent: *May 8, 2007

(54) UPGRADEABLE AND RECONFIGURABLE 6,049,222 A 4/2000 Lawman
PROGRAMMABLE LOGIC DEVICE 6,150,837 A 11/2000 Beal

6.467,009 B1 10/2002 Winegarden
(75) Inventors: Om P. Agrawal, Los Altos, CA (US); 6,538,468 B1 3/2003 Moore

Howard Tang, Cupertino, CA (US); 6.704,850 B1 3/2004 Reynolds
Jack Wong, Fremont, CA (US) 6,721,840 B1 4/2004 Allegrucci

s s 6,732,263 B1 5/2004 May
6,774,668 B1 8, 2004 Wirt

(73) Assignee: Lattice Semiconductor Corporation, 6,828,823 B1 12/2004 y
Hillsboro, OR (US) 6,851,047 B1 2/2005 Fox

6,873,177 B1 3/2005 Wennekamp
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days. Lattice Semiconductor Corporation, ispXPGA Family Preliminary

Datasheet, Dec. 2002.
This patent is Subject to a terminal dis- Lattice Semiconductor Corporation, ispXPGA Family Preliminary
claimer. Datasheet, Sep. 2003.

Lattice Semiconductor Corporation, Product Bulletin iPB1166,
(21) Appl. No.: 11/455,315 Feb. 2003.

Actel Corporation, Pro ASIC Flash Family FPGAs Datasheet, Dec.
(22) Filed: Jun. 16, 2006 2003.

Altera Corporation, FLASHlogic Programmable Logic Device
(65) Prior Publication Data Family Datasheet, Jun 1996.

Altera Corporation, “Configuring FLASHlogic Devices.” Applica
US 2006/0232295 A1 Oct. 19, 2006 tion Note 45, Apr. 1995.

Smith. D. E., “Intel's FLEXlogic FPGA Architecture.” Compcon
Related U.S. Application Data Spring 93, Digest of Papers, pp. 378-384, Feb. 1993.

Brown, C. “Overview of In-Circuit Reconfiguration and
(63) Continuation of application No. 10/783,886, filed on Reprogamming for the FLEXlogic iFX8160.” Application Note

Feb. 20, 2004, now Pat. No. 7,081,771. AP-394, Mar. 1994.

(51) Int. Cl. Primary Examiner Don Le
H03K 19/177 (2006.01) 57 ABSTRACT

(52) U.S. Cl. ... 326/38,326/41 (7)
(58) Field of Classification Search 326/3841 Programmable logic devices and techniques for program

See application file for complete search history. ming and/or reconfiguring these devices are disclosed. For
(56) References Cited example, in accordance with an embodiment of the present

U.S. PATENT DOCUMENTS
invention, a programmable logic device is disclosed that
incorporates flash memory and SRAM and includes multiple
data ports for programming the flash memory and/or the 5,548,228 A 8, 1996 Madurawe

5,640,107 A 6, 1997 Kruse SRAM.
5,689,516 A 11, 1997 Mack
5,696,455 A 12/1997 Madurawe 17 Claims, 3 Drawing Sheets

É

408 CPU Port interface

Device
Function

SOC
408 SRAM Engble

Command E. Engble
Decoder SE as Dato Out Copy SRAM To FLASH

Copy FASHTo SRAM
g-X
SY 402 SRAM. Y. i SRAM Fuses

B
Dato Register it

s FLASHFSeS

Programming Status

410

Progrom Stort

Programming
N"ESA"A

FLASH

Pregging N ngine

U.S. Patent May 8, 2007 Sheet 1 of 3 US 7,215,139 B2

FLASH MEMORY 102

Control Logic
FLASH MEMORY 102

FIG. 1

202

FOSh is Confiquration

() JTAG Port

FIG. 2

of

U.S. Patent May 8, 2007 Sheet 2 of 3 US 7,215,139 B2

Modes used for programming and configuring the memory spaces

1149.1 TAP CPU PORT

SRAM
Memory Space

Download in
Mi Memory Space Microseconds

U.S. Patent May 8, 2007 Sheet 3 of 3 US 7,215,139 B2

: 2

Device
Function

Programming Status

FIG. 4

US 7,215,139 B2
1.

UPGRADEABLE AND RECONFIGURABLE
PROGRAMMABLE LOGIC DEVICE

RELATED APPLICATION DATA

This application is a continuation of application Ser. No.
10/783,886, filed Feb. 20, 2004 is now a U.S. Pat. No.
7,081,771.

TECHNICAL FIELD

The present invention relates generally to electrical cir
cuits and, more particularly, to programmable logic devices.

BACKGROUND

Programmable logic devices (PLDs), such as for example
complex programmable logic devices (CPLDs) and field
programmable gate arrays (FPGAs), utilize various types of
memory to store their configuration data, which defines the
functionality of the PLD. For example, CPLDS generally
employ electrically erasable complementary metal oxide
semiconductor (EECMOS) technology, which is non-vola
tile but can be programmed (e.g., receive and store data)
only a limited number of times and takes longer to program
than some other types of memory (e.g., static random access
memory (SRAM)). CPLDs typically provide numerous ben
efits, such as fast, predictable timing and single-level, wide
logic Support.
As another example, FPGAs typically provide benefits,

Such as high logic density and low standby power and
generally utilize SRAM technology. SRAM is infinitely
reconfigurable, but loses its programming upon power loss
(i.e., volatile memory) and generally requires an external
non-volatile source to Supply it with configuration data upon
power-up.

Various types of non-volatile technology have been intro
duced for FPGAs to replace SRAM. For example, antifuse
based technology provides non-volatility, but can not be
reprogrammed and so is not reconfigurable. Other types of
non-volatile technology have been introduced, but typically
Suffer from various drawbacks, such as limited programma
bility.

Furthermore, conventional PLDs generally provide a lim
ited number of ways to program internal memory. For
example, a PLD employing EECMOS technology (e.g.,
electrically erasable programmable read only memory or
EEPROM) may be programmable only through a JTAG
interface. As a result, there is a need for improved program
mable logic devices and techniques for programming the
programmable logic devices.

SUMMARY

Systems and methods are disclosed herein to provide
programmable logic devices along with techniques for pro
gramming or reconfiguring these devices. For example, in
accordance with an embodiment of the present invention, a
programmable logic device is disclosed that incorporates
flash memory and SRAM to provide certain benefits, such as
in-system programmability, dynamic reconfigurability,
remote upgradeability, and/or essentially instant-on capabil
ity. The flash memory eliminates the need for external
configuration devices that are typically required for SRAM
based PLDs. The SRAM technology provides infinite recon
figurability, which may not be available with flash-based
PLDs. Furthermore, flexible programming or configuration

10

15

25

30

35

40

45

50

55

60

65

2
techniques are provided to Supply configuration data from
the flash memory to the SRAM or via multiple data ports
(e.g., a CPU interface port and a JTAG interface port) to the
flash memory and/or to the SRAM.
More specifically, in accordance with one embodiment of

the present invention, a programmable logic device includes
Volatile memory adapted to configure the programmable
logic device for its intended function based on configuration
data stored by the volatile memory; non-volatile memory
adapted to store data which is transferable to the volatile
memory to configure the programmable logic device; a first
data port adapted to receive external data for transfer into
either the volatile memory or the non-volatile memory; and
a second data port adapted to receive external data for
transfer into either the volatile memory or the non-volatile
memory.

In accordance with another embodiment of the present
invention, a programmable device includes static random
access memory adapted to configure the programmable
device for its intended function based on configuration data
stored by the static random access memory; flash memory
adapted to store data which is transferable to the static
random access memory to configure the programmable
device; a JTAG port adapted to receive external data for
transfer into either the static random access memory or the
flash memory; a CPU port adapted to receive external data
for transfer into either the static random access memory or
the flash memory; and means for transferring the external
data received by the JTAG port or the CPU port to the static
random access memory or the flash memory.

In accordance with another embodiment of the present
invention, a method of providing programming options for
a programmable device includes providing a background
mode for transferring external data via a first data port or a
second data port to non-volatile memory; providing a direct
mode for transferring the external data via the second data
port to the non-volatile memory; and providing a system
configuration mode for transferring the external data via the
second data port to volatile memory, wherein the volatile
memory is adapted to configure the programmable device.

In accordance with another embodiment of the present
invention, a programmable logic device includes volatile
memory adapted to configure the programmable logic
device for its intended function based on configuration data
stored by the volatile memory; non-volatile memory adapted
to store data which is transferable to the volatile memory to
configure the programmable logic device; and a CPU port
adapted to receive external data for transfer into either the
Volatile memory or the non-volatile memory.

In accordance with another embodiment of the present
invention, a method of providing data transfer options for a
programmable logic device includes providing a CPU port
adapted to receive external data for transfer into either
Volatile memory or non-volatile memory of the program
mable logic device, wherein data stored in the volatile
memory configures the programmable logic device; and
providing data registers adapted to transfer data stored in the
non-volatile memory to the volatile memory and to transfer
data stored in the volatile memory to the non-volatile
memory.

In accordance with another embodiment of the present
invention, a programmable logic device includes volatile
memory adapted to configure the programmable logic
device based on configuration data stored by the volatile
memory; non-volatile memory adapted to store configura
tion data; and a command decoder operable to control the

US 7,215,139 B2
3

transfer of configuration data from the non-volatile memory
to the volatile memory and from the volatile memory to the
non-volatile memory.

In accordance with another embodiment of the present
invention, a method of configuring a programmable logic
device includes providing volatile memory within the pro
grammable logic device adapted to configure the program
mable logic device based on configuration data stored by the
Volatile memory; providing non-volatile memory within the
programmable logic device adapted to store configuration
data; transferring configuration data from an external device
to the volatile memory to configure the programmable logic
device; and transferring the configuration data from the
volatile memory to non-volatile memory within the pro
grammable logic device to store the configuration data.
The scope of the invention is defined by the claims, which

are incorporated into this section by reference. A more
complete understanding of embodiments of the present
invention will be afforded to those skilled in the art, as well
as a realization of additional advantages thereof, by a
consideration of the following detailed description of one or
more embodiments. Reference will be made to the appended
sheets of drawings that will first be described briefly.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram illustrating a program
mable logic device in accordance with an embodiment of the
present invention.

FIG. 2 shows a block diagram illustrating programming
options of a programmable logic device in accordance with
an embodiment of the present invention.

FIG. 3 shows a block diagram illustrating programming
options of a programmable logic device in accordance with
an embodiment of the present invention.

FIG. 4 shows a block diagram illustrating exemplary
programming activities of a programmable logic device in
accordance with an embodiment of the present invention.

Embodiments of the present invention and their advan
tages are best understood by referring to the detailed
description that follows. It should be appreciated that like
reference numerals are used to identify like elements illus
trated in one or more of the figures.

DETAILED DESCRIPTION

FIG. 1 shows a block diagram illustrating a program
mable logic device (PLD) 100 in accordance with an
embodiment of the present invention. PLD 100 includes
flash memory (flash) 102 and SRAM memory (SRAM) 104.
Flash 102 is non-volatile memory used to store configuration
data, which can be transferred internally to SRAM 104,
when desired via control logic 106, to configure PLD 100.
SRAM 104 is the SRAM memory cells used to store
configuration data that configures PLD 100 for its intended
functionality.

It should be understood that flash 102 represents an
exemplary type of non-volatile memory, but other types of
non-volatile memory (e.g., EECMOS) that can be repro
grammed once or repeatedly may be substituted for flash
102. Furthermore, either flash 102 or SRAM 104 may be
programmed (i.e., receive and store information in its
memory) to store configuration data for PLD 100, but the
device functionality of PLD 100 is determined by the
information stored in SRAM 104. Thus, PLD 100 is con
figured or reconfigured (including partial reconfiguration)
when information is programmed into SRAM 104.

10

15

25

30

35

40

45

50

55

60

65

4
Flash 102 and SRAM 104 within PLD 100 may be

programmed by various techniques in accordance with an
embodiment of the present invention. For example as
described further herein, flash 102 and/or SRAM 104 may
be programmed or reprogrammed via a first data port (e.g.,
Such as a joint test action group (JTAG) port by employing
standards such as either Institute of Electrical and Electron
ics Engineers (IEEE) 1149.1 or 1532 standards) and/or via
a second data port (e.g., such as a central processing unit
(CPU) port which is also referred to as a peripheral data
port). One or more control pins and/or instructions (e.g.,
control bits) may be employed, for example, to determine
which memory (flash 102 or SRAM 104) is to be pro
grammed.
SRAM 104 may also be programmed via flash 102 under

the direction of conventional control logic 106. By combin
ing flash 102 and SRAM 104, a single integrated circuit (i.e.,
chip) solution is provided that offers numerous benefits. For
example, SRAM 104 may be configured by flash 102 much
faster than through external techniques by providing wide
data transfer paths (e.g., including multiple blocks of data)
between flash 102 and SRAM 104. Thus, PLD 100 may be
configured very rapidly to provide essentially an “instant
on' capability (e.g., configuration data transferred from flash
106 to SRAM 104 in microseconds) due to the potentially
rapid configuration process as compared to some conven
tional techniques (e.g., requiring a number of milliseconds
to load an external bitstream into SRAM 104).
As another example, configuration data stored in flash 102

and/or SRAM 104 may be protected by security bits that
configure circuitry to prevent unauthorized reading or copy
ing of the configuration data (e.g., disable read back of the
PLD pattern) from flash 102 or SRAM 104 to an external
device. Furthermore, after programming flash 102 (e.g., in a
secure environment such as in the manufacturing facility),
no further external bitstream is required that could poten
tially be copied during system operation in the field by
examining the external bitstream pattern upon power-up.

FIG. 2 shows a block diagram illustrating programming
options of a programmable logic device (PLD) 200 in
accordance with an embodiment of the present invention.
PLD 200 includes flash memory (flash) 202, SRAM
memory (SRAM) 204, logic 206, a data port 208, and a data
port 210. As an example, PLD 200 may represent an
exemplary implementation of PLD 100, with flash 202 and
SRAM 204 corresponding to flash 102 and SRAM 104,
respectively.

Data port 208 and data port 210 may, for example,
represent a CPU port and a JTAG port, respectively. Logic
206 may represent core logic of PLD 200, such as FPGA
based logic circuits (e.g., lookup tables) or CPLD-based
logic circuits (e.g., AND arrays), for example, with SRAM
204 storing configuration data which defines the function
ality of logic 206.
As shown in FIG. 2, flash 202 and SRAM 204 may each

be programmed via data port 208 and data port 210. For
example, flash 202 may be programmed via data port 208
(e.g., CPU port) or data port 210 (e.g., JTAG port). Like
wise, SRAM 204 (i.e., configuration memory for PLD 200)
may be programmed via data port 208 (e.g., CPU port) or
data port 210 (e.g., JTAG port) to configure PLD 200.
Alternatively, SRAM 204 may be programmed via flash 202
to configure PLD 200.

In general, programming flash 202 may take longer (e.g.,
seconds) than programming SRAM 204 (e.g., milliseconds).
However, once flash 202 is programmed, flash 202 can be
employed to program SRAM 204 much faster (e.g., micro

US 7,215,139 B2
5

seconds) than would generally be possible via data port 208
or data port 210 to provide essentially an instant-on capa
bility (e.g., logic 206 may be available 200 microseconds
after power-up). Flash 202 may also be programmed while
PLD 200 is operating (e.g., background or transparent
operation), with the information from flash 202 transferred
to SRAM 204 when desired to reconfigure PLD 200.

Furthermore, PLD 200 may offer certain advantages over
Some conventional types of PLDS, such as a single chip
Solution which can provide high security (e.g., no external
bitstream because flash 202 can maintain the configuration
data for SRAM 204 when power is removed), reduced board
area (e.g., no additional integrated circuits required to pro
gram PLD 200 due to the existence of flash 202), and/or
improved reliability (e.g., PLD 200 may be self-contained
Such as for programming purposes or can accept configu
ration data either through data port 208 or data port 210).
By incorporating both non-volatile flash (e.g., flash 202)

and volatile SRAM memory (e.g., SRAM 204) within a PLD
to store configuration data, the flash memory eliminates the
need for external configuration devices that are required for
SRAM-based PLDs, while the SRAM allows for infinite
reconfigurability that is generally not possible with non
volatile memory-based PLDs (e.g., flash or EECMOS
memory). Furthermore, in accordance with an embodiment
of the present invention, the flash memory may be upgraded
(i.e., programmed) via two or more different ports (e.g., a
JTAG port and a CPU port), in contrast to conventional
non-volatile memory-based PLDs which allow program
ming only through a JTAG interface (e.g., EECMOS-based
PLDs).

For example, by incorporating flash 202 and SRAM 204
into PLD 200 (e.g., an FPGA), PLD 200 provides an
essentially instant-on, remotely upgradeable, non-volatile,
and dynamically reconfigurable device (e.g., integrated cir
cuit) with the ability to program flash 202 directly, for
example, via a CPU interface or a JTAG interface. With flash
202 programmable via the CPU interface, certain benefits
may be obtained. For example, system designers may
upgrade their circuit boards (e.g., PLD 200 and possibly
other devices on a circuit board) remotely via a simple
software update provided to flash 202 via the CPU interface
(e.g., update circuit board devices directly and remotely with
software updates via the CPU interfaces of the devices,
including PLD 200). Thus, this allows the system designers
to leverage their traditional method of programming flash
memory, which is via a CPU port interface.

Furthermore, by providing a CPU port, testing time may
be reduced due to the faster throughput of a CPU port
relative to a JTAG port. For example, Table 1 provides a
general comparison between programming flash memory
via a JTAG port and via a CPU port, as illustrated in Table
1. In general, utilizing the CPU port interface provides
certain advantages in terms of data throughput and only
disrupting the targeted device during programming, rather
than all of the devices in the chain (e.g., as with a JTAG
chain).

TABLE 1.

Parameters JTAG CPU Comments

Programming Fixed Variable pulse Variable pulse is also
method pulse known as polling
Programming Slow Fast CPU mode employs
time polling, which is

faster than JTAG
method

Data speed Slow Approximately JTAG writes data one
eight times bit at a time in

10

15

25

30

35

40

45

50

55

60

65

6

TABLE 1-continued

Parameters JTAG CPU Comments

faster than contrast to eight
JTAG data bits at a time (CPU
speeds port)

System Affects Only the target CPU programming is
behavior every device sees the more reliable, because

device in programming it does not disturb
the JTAG activity the other devices
chain

FIG. 3 shows a block diagram illustrating programming
options of a programmable logic device in accordance with
an embodiment of the present invention. For example, FIG.
3 may illustrate techniques for programming and/or config
uring PLD 100 (FIG. 1) or PLD 200 (FIG. 2). As shown in
FIG. 3, two ports are provided, a data port 302 and a data
port 304, which are used to provide external data (i.e.,
information, which may include control signals, configura
tion data, security bits, or other types of data) to memory
within the PLD.

Because various approaches or manufacturing flows may
differ, multiple techniques or methods are provided to pro
gram and configure the memory space of the PLD exem
plified in FIG. 3. The memory space or memory of the PLD
includes flash 306 and SRAM 308, which can be configured
or programmed as illustrated in FIG. 3.

For example, data port 302 (e.g. a JTAG port), which may
for example represent an IEEE 1149.1 compliant test access
port (TAP), may be used to program flash 306 or SRAM 308
and, thus allow in-system programmability or programming
through a device-programmer system. The programming
algorithm and circuitry may be designed to be fully IEEE
1532 compliant to allow programming via an IEEE 1532
programming mode 312, which allows for universal Support
from general automated test equipment (ATE) and other
types of test systems.

Flash 306 may also be programmed in-system in a back
ground mode (BKGND) 310 while the PLD continues to
perform its system logic functions that are controlled or
configured by SRAM 308 (i.e., programming of flash 306 is
transparent to the device's logic operations). Control pins
and/or instructions (e.g., control bits), for example, may be
employed to determine which memory (flash 306 or SRAM
308) will be used to store the externally-provided data (e.g.,
via data port 302 or via data port 304) and which mode will
be utilized (e.g., background mode 310 or 1532 program
ming mode 312).

Flash 306 and SRAM 308 may also be programmed via
data port 304. Data port 304 may, for example, represent a
dedicated serial interface and/or a CPU port (e.g., a 33 MHz,
8-bit parallel port) utilized by an external microprocessor for
transferring data to flash 306 or SRAM 308. When utilizing
data port 304 to configure SRAM 308, the PLD is in a
system configuration mode 314 (sysCONFIG), with the data
stored in SRAM 308 determining the logic and functionality
provided by the PLD. When utilizing data port 304 to
configure flash 306, flash 306 may be programmed directly
or through background mode 310. For example, a field
upgrade may be downloaded to reprogram flash 306 via data
port 304 (e.g., CPU interface) while the PLD is operating.
Flash 306 may then be utilized to reconfigure SRAM 308
(e.g., in less than a millisecond).
As illustrated in FIG. 3, there are three different ways to

configure SRAM 308: 1) downloading data from flash 306,

US 7,215,139 B2
7

2) IEEE 1532 programming mode 312 via data port 302, and
3) system configuration mode 314 via data port 304. The
fastest method for configuring SRAM 308 would generally
occur by employing flash 306 to download data to SRAM
308, which may occur, for example, in microseconds as
compared to milliseconds or longer for the other methods.
As an example, flash 306 may download data directly to
SRAM 308 automatically at power-up as well as on com
mand by a user.

Flash 306 is bypassed when SRAM 308 is configured via
data port 304 by employing system configuration mode 314
or configured via data port 302 by employing IEEE 1532
programming mode 312 (e.g., via IEEE 1149.1 TAP of data
port 302). System configuration mode 314 may, for example,
be available at power-up and upon user command to con
figure SRAM308, with the PLD’s input/output (I/O) circuits
tri-stated during configuration of SRAM 308 (i.e., loading
data into memory cells of SRAM 308).

In general, the PLD’s I/O circuits may be tri-stated during
configuration of SRAM 308. However in a conventional
manner, when reading back the configuration data using
system configuration mode 314, the I/O circuits and logic of
the PLD may continue to operate to perform their intended
functions. When configuring SRAM 308 using IEEE 1532
programming mode 312, the boundary-scan register controls
the I/O circuits. Furthermore, after flash 306 or SRAM 308
is programmed, a standard verify cycle may be performed,
for example by background mode 310 or IEEE 1532 pro
gramming mode 312, to read back the data stored in the
memory (i.e., flash 306 or SRAM 308) to ensure or verify
that the PLD has been properly loaded with the data (e.g.,
configuration data or data pattern).
As an example, Table 2 Summarizes various exemplary

programming or configuration modes of operation in accor
dance with an embodiment illustrated in FIG. 3. The exem
plary modes of operation are provided with exemplary time
estimates to perform the corresponding operation.

TABLE 2

Exemplary Modes of Operation

DURING OFFLINE
POWER-UP ON COMMAND (PRO

OPERATION IN-SYSTEM IN-SYSTEM GRAMMER)

Auto-configure Yes
SRAM from on-chip (e.g., in
flash memory microseconds)
Reconfigure SRAM Yes
from on-chip flash (e.g., in
memory microseconds)
Program on-chip Yes
flash memory while (e.g., in
PLD is operating Seconds)
Program on-chip Yes Yes
flash memory (e.g., in (e.g., in

Seconds) Seconds)
Configure SRAM Yes Yes
directly in system (e.g., in (e.g., in
configuration mode milliseconds) milliseconds)

Non-volatile and infinitely reconfigurable programmable
logic devices are disclosed herein in accordance with one or
more embodiments of the present invention. For example,
programmable logic devices. Such as for example high
density FPGAs or CPLDs which utilize one or more aspects
of the present invention, may be in-system programmable,
remotely upgradeable, dynamically reconfigurable, and/or
have instant-on capability.

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 4 shows a block diagram illustrating exemplary

programming activities of a programmable logic device
(PLD) 400 in accordance with an embodiment of the present
invention. PLD 400 may represent PLD 100 (FIG. 1) or PLD
200 (FIG. 2) and illustrate in an exemplary fashion various
activities within PLD 400 having SRAM memory 402
(labeled SRAM fuses) and flash memory 404 (labeled flash
fuses), with information stored in SRAM memory 402
determining the device function or functionality of PLD
400.

PLD 400 includes a CPU port interface 408 and a JTAG
port interface 410, with a command decoder 406 controlling
data flow and commands within PLD 400 and to/from CPU
port interface 408 and JTAG port interface 410. For
example, command decoder 406 controls the flow of data
between SRAM memory 402 and flash memory 404 and
CPU port interface 408 and JTAG port interface 410. As
illustrated, data may be transferred from SRAM memory
402 to flash memory 404 or from flash memory 404 to
SRAM memory 402.

Table 3 illustrates various exemplary programming
actions for PLD 400 (or PLD 100 of FIG. 1 or PLD 200 of
FIG. 2). The cross port programming options illustrates that
not only can data may be transferred internally between
SRAM memory 402 and flash memory 404, but externally
also via CPU port interface 408 (labeled Action on CPU
port) and JTAG port interface 410 (labeled Action on JTAG
port). For example, information stored in SRAM memory
402 may be readback via CPU port interface 408 and the
information or a modified form of the information may be
utilized to program flash memory 404 via JTAG port inter
face 410.

TABLE 3

Program Action. On CPU Port Action. On JTAG Port

Options SRAM Fuses FLASH Fuses SRAM Fuses FLASH Fuses

CPU Port Program No Action No Action No Action
Only Being Read Copy From No Action No Action

SRAM
Copy From Being Read No Action No Action
FLASH
Device in Program No Action No Action
operation
Device not Program No Action No Action
in operation

JTAG Port No Action No Action Program No Action
Only No Action No Action Being Read Copy From

SRAM
No Action No Action Copy From Being Read

FLASH
No Action No Action Device in Program

operation
No Action No Action Device not Program

in operation
Cross Port Program No Action No Action Readback

No Action Program Readback No Action
Readback No Action No Action Program
No Action Readback Program No Action

Both Ports Program No Action No Action Program
In Parallel No Action Program Program No Action

Table 4 illustrates an exemplary comparison between
JTAG port programming and CPU port programming of
flash memory (e.g., flash fuses of PLD 400). In general,
programming via the JTAG port offers certain advantages
over programming via the CPU port, as Summarized in Table
4.

US 7,215,139 B2
9

TABLE 4

Parameters On CPU Port On JTAG Port

Time Fast Slow
Data Is Provided in Data is provided in
parallel, 8 bits at a serial, 1 bit at a time.
time

Interface Direct Debug
High CCLK data Slower TCK data
clocking rate, 66–130 clocking rate, ~25
MHZ MHZ

Intelligent Yes, the Status pin is No, the status pin
Programming checked directly can't be checked

A non-volatile, infinitely reconfigurable PLD, in accor
dance with one or more embodiments of the present inven
tion, may reliably provide designers with many desirable
benefits, such as for example logic availability within micro
seconds of power-up or reprogramming and with high
security. Significant savings may accrue in the amount of
board space, system design effort, inventory costs, handling
costs, and manufacturing costs that are required. Field
system upgrades, including those performed during system
operation, may be simplified.

In accordance with one or more embodiments, a flexible
combination of programming/configuration modes permits a
system designer to achieve numerous benefits. For example,
programming may be performed in the manufacturing facil
ity to allow the PLD to auto-configure during power-up
(e.g., within microseconds). The PLD may be reconfigured
periodically during operation. As an example, a field
upgrade may be downloaded to reprogram flash memory
while the PLD is operating, with the data then used to
reconfigure its SRAM in microseconds. Alternatively, a
default pattern may be programmed into the flash memory
during manufacturing, but a new pattern may be pro
grammed directly into the SRAM or the flash memory via
one or more data ports (e.g., a JTAG or CPU port), depend
ing on system conditions or a desired application. Further
more, a pattern may be programmed into the flash memory
to verify system power-up and to checkout a configuration
in manufacturing and then the PLD may be reconfigured to
a system-operation pattern in-system via one of the data
ports.

Security of the PLD configuration pattern is enhanced
because an external bitstream is not required during con
figuration. Non-volatile security bits may also be employed
to prevent or disable read back of the PLD pattern. Further
more, system design may be simplified because there is no
noise, reliability, or board space concerns related to con
figuration from an external source. Such as for example a
series programmable read only memory (SPROM).

In accordance with one or more embodiments of the
present invention, a PLD (e.g., an FPGA) is disclosed
providing certain advantages, such as in-system program
mability, remote upgradeability (e.g., via a CPU mode
interface), essentially instant-on capability, infinite recon
figurability, and dynamic reconfigurability. For example,
non-volatile flash memory is incorporated along with
SRAM memory within an FPGA, with the flash memory and
the SRAM memory programmable via a JTAG interface and
a CPU interface. The PLD provides essentially instant-on
capability (e.g., less than 0.001 second) by transferring
configuration data from the flash memory to the SRAM
memory upon power-up of the PLD (rather than configuring
the PLD via an external bitstream, which generally takes
much longer to complete).

10

15

25

30

35

40

45

50

55

60

65

10
Embodiments described above illustrate but do not limit

the invention. It should also be understood that numerous
modifications and variations are possible in accordance with
the principles of the present invention. Accordingly, the
scope of the invention is defined only by the following
claims.

The invention claimed is:
1. A programmable logic device comprising:
a first data port;
Volatile memory adapted to configure the programmable

logic device based on configuration data stored by the
Volatile memory;

non-volatile memory adapted to store configuration data;
and

a command decoder operable to control transfer of con
figuration data from the non-volatile memory to the
volatile memory and from the volatile memory to the
non-volatile memory and further operable to control
transfer of configuration data from the first data port to
the volatile memory and from the first data port to the
non-volatile memory.

2. The programmable logic device of claim 1 including a
second data port, the command decoder further operable to
control transfer of configuration data from the first data port
or the second data port to the volatile memory and from the
first data port or the second data port to the non-volatile
memory.

3. The programmable logic device of claim 2, wherein the
first data port is a JTAG port and the second data port is a
CPU port.

4. The programmable logic device of claim 1, further
comprising core logic adapted to be configured by the
configuration data stored in the Volatile memory.

5. The programmable logic device of claim 1, wherein the
Volatile memory comprises static random access memory
and the non-volatile memory comprises flash memory.

6. The programmable logic device of claim 1, wherein the
non-volatile memory is further adapted to store security bits
that can be set to prevent unauthorized reading of the
configuration data from the programmable logic device.

7. The programmable logic device of claim 1, wherein the
programmable logic device is an FPGA.

8. A programmable logic device comprising:
a data port;
Volatile memory adapted to configure the programmable

logic device based on configuration data stored by the
Volatile memory;

non-volatile memory adapted to store configuration data;
and

means for controlling transfer of configuration data from
the non-volatile memory to the volatile memory and
from the volatile memory to the non-volatile memory
and for controlling transfer of configuration data from
the data port to the volatile memory and from the data
port to the non-volatile memory.

9. The programmable logic device of claim 8, further
comprising core logic adapted to be configured by the
configuration data stored in the Volatile memory.

10. The programmable logic device of claim 8, wherein
the volatile memory comprises static random access
memory and the non-volatile memory comprises flash
memory.

11. The programmable logic device of claim 8, wherein
the non-volatile memory is further adapted to store security
bits that can be set to prevent unauthorized reading of the
configuration data from the programmable logic device.

US 7,215,139 B2
11

12. The programmable logic device of claim 8, wherein
the programmable logic device is an FPGA.

13. A programmable logic device comprising:
Volatile memory adapted to configure the programmable

logic device based on configuration data stored by the
Volatile memory;

non-volatile memory adapted to store configuration data;
a data register coupled between the Volatile memory and

non-volatile memory; and
a command decoder operable to control transfer of con

figuration data via the data register from the non
volatile memory to the volatile memory and from the
Volatile memory to the non-volatile memory.

14. The programmable logic device of claim 13 including
a first data port, the command decoder further operable to
control transfer of configuration data from the first data port
to the volatile memory and from the first data port to the
non-volatile memory.

10

15

12
15. The programmable logic device of claim 14 including

a second data port, the command decoder further operable to
control transfer of configuration data from the first data port
or the second data port to the volatile memory and from the
first data port or the second data port to the non-volatile
memory.

16. The programmable logic device of claim 15, wherein
the first data port is a JTAG port and the second data port is
a CPU port.

17. The programmable logic device of claim 13, wherein
the volatile memory comprises static random access
memory and the non-volatile memory comprises flash
memory.

