
United States Patent (19)
Tang

54 METHOD FOR SIMULTANEOUS
PROGRAMMING OF IN-SYSTEM
PROGRAMMABLE INTEGRATED CRCUITS

75) Inventor: Howard Y. M. Tang, San Jose, Calif.

73) Assignee: Lattice Semiconductor Corporation,
Hillsboro, Oreg.

(21) Appl. No.: 505,837
22 Filed: Jul. 21, 1995

(51 Int. Cl. H03K 19/177
52 U.S. Cl. ... 326/38; 364/489
(58) Field of Search 326/38,39;364/491,

364/489, 490

56) References Cited

U.S. PATENT DOCUMENTS

4,488,246 12/1984 Brice 364/716
4,879,688 11/1989 Turner et al. ... 36.5/201
4,940,909 7/1990 Mulder 326/38
5,237,218 8/1993 Josephson et al. 307/.465

404

Program Command Generator

ispG.
ill

is l

|| |
-nnnn

US005635855A

11 Patent Number: 5,635,855
45 Date of Patent: Jun. 3, 1997

5,256,918 10/1993 Suzuki
5,329,179 7/1994 Tang et al.
5,493.239 2/1996. Zlotnick. O
5,495,181 2/1996 Kolze .. 326/38

OTHER PUBLICATIONS

ISP Manual 1994 "Lattice In-System Programmability
Manual 1994'.

Primary Examiner Edward P. Westin
Assistant Examiner-Benjamin D. Driscoll
Attorney, Agent, or Firm-Skjerven, Morrill, MacPherson,
Franklin & Friel; Edward C. Kwok

57 ABSTRACT

Multiple in-system programmable devices are connected in
series to - a programming controller for simultaneous pro
gramming. One embodiment puts all such in-system pro
grammable devices in programming mode, and to receive
programming data and programming instruction simulta
neously. In that configuration, all devices begins program
ming and stops programming simultaneously.

10 Claims, 24 Drawing Sheets

405 '' isols 1032 9 splS 1016

S
DEVICE 2 DEVICE 3

DI SD0 SDI

SDI SDO

Row 0 Row Addr. 0 Row 0 High Row Addr, 0 High
Row 1 Row Addr.

DEVICE 40 DEVICE 402 DEVICE 403

Row 43 Row add 45 Row 21 Low Row Addr. 21 Low
Row 44 Row Addr. 44 Row 22 High Row Addr. 22 High
Row 45 Row 22 ow Row Addr, 22 Low
Row 46 Row 23 High Row Addr. 23 High

DEVICE 402 DEMCE 403
ROW 191 RoW Addr. 95 Low
ROW 192 Row Addr. 96 High V

a U. 900

DEVICE 403

Row 215 Row. Addr. 107 Lor

U.S. Patent Jun. 3, 1997 Sheet 2 of 24 5,635,855

DATA
REGISTERS

2050 -203
Doto In 79. High Order Shift Register ...0 SDO
(SDI) 159. OW Order Shift Register 80

2O3b SD

201 2O2

E2CMOS Cell Arroy E
f

s

SDO

8-bit D Shift Register

SD B7 B6. B BO SDO

204

G. 2

U.S. Patent Jun. 3, 1997 Sheet 3 of 24 5,635,855

DATA
RECISERS
f 3030

High Order Shift Register
Low Order Shift Register

E2CMOS Cell Arroy

302

8-bit ID Shift Register

SD B7 B6. B1 BO SDO

304

G. 3

5,635,855 Sheet 4 of 24 Jun. 3, 1997 U.S. Patent

ZÇOI ISTdS}

U.S. Patent Jun. 3, 1997 Sheet 5 of 24 5,635,855

QF5892*
CO

BT FO
E N And Array Rows ROW

OOOOO ROW ADDRESS 2. ADDRESS 45
11 11 11 11 11 1 1 0 1 1 1 11 11 1 11 11 1 1 1
11 11 11 11 11 1 1 11 11 11 11 11 11 1 1 1 1 1 11
1 O 111 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 11 1 1 1
11 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 11 1 0 1 11 11111111111
11 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 11

1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 11
11 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 11 1 0 1 1 0 1 1 0 1 1 1 1 11 11
11 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1
11 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 11 11 11 1 1 1 11
OO
11 11 11 11 1 1 1 11 11 1 1 1 1 1 11 1 1 1 1 11
11 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 11 11 11 1 1 1 11 11

60

OO
OO

OO"
N Arch i t e C tur e Row

B L 58 08
31 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 OOOOO*

N UES Row
5828
OOOOOOOOOOOO 1 1 0 1 00 0 1 0 1 0 1 1 OO 11 OOOOO 10 000
1 0 1 0 1 0 1 1 1 1 OO 1 1 0 1 1 1 O*
CFBD 8
AF2C

F.G. 6

U.S. Patent Jun. 3, 1997 Sheet 6 of 24 5,635,855
N

us
S S
c ci S.

s s

2 at is is a 5 as it a gig as it as it a ses E - E - E - 5 s, E - 5 s
ge & s - - on en r n r r- L. Lo

well valve ye ya vs. y qm vs - was yae o O ye was yrs v- C Co v vs - He

Oree v.v. we were we v vs Co. Co v van was ye as to o ve ve ye we we we
ye role ye was vra qas was re C o O Old O C tree years v- we

Oo or- v- r- v-v- we re-v- we r- v- v-oo o o v- v-v- vers were
o Co. Oure your year v is a qa v ym in O see v. C. C. O. O. van ult ye wre

O o o qas qass

a. L - O q y v O o ve vo o o C C vie ae te (you p O O va ques uns

U.S. Patent Jun. 3, 1997 Sheet 8 of 24 5,635,855

v- slaves v- van O so o v- we was to a ten years were d vee was to 8
vie seaso o a vas yam was gas vas was quan was ye was v O. O. So we wr
C do o v- a vam - v- was o O O C C o O vos Y O C.
via e-vam w y van yen va o O v van via v i yi ve Co. v. Ov
was movals vs was pass was ve vers yes o Oc v- we go ya o O were r ra
van reve una was via v va O o was re-in D vs gree goes o O vrr e O
o Co. C le - was van o O ye was a ya qas o tree o O so go
O Oval- we via ville was a v-e ye as via vre we reas old v- O V-wr ed
O Ova vris van was v- was v- van ye y va o ve ve OC O. O. v.

o oo one ve ya q-e ye was o o o O O O C ye yel O CD
res v-sr v- is v- w van C. C. van yen me via van was was so r vs
was eville, rear ve year sea y yes wra o O ye ya o me we wres vine was rer
v- welve yes ve v- see vrad O. O. v.- v- O was v- we Oo we re- O
o oo do - vs H was o o le ques as reas o O ye Co v Co was
O. oval- vs a ye yar y year ym was a s no e o you do war ya o
C Ovea was via via - v- we w a via w- to we v C co. O. d v
vie vey- ya o o que y. - yr O van re. C was o que C C were
- yawrie v u v O. o. o O ye y- O ye y- we v. Over - O

was rels as vers v- see ye was via e Ce glo CD ver
was a year o o O so o O so O ye C. C.
sym O van was v- w y will Co. O C C ver
villa is as co o a year to vie o O was qs

re

q

vie

qs

- was O Co - sma Co a v v. C. Over v. C.
va

tyles

qas

ve

vrrp Co o very year was unve v. C C C -
gae - ess v- we are vers qme war was y vir to
was valle was q- vs yells via was tra C y wre
vil y- H of v- r reas was wr C C we

s

U.S. Patent Jun. 3, 1997 Sheet 9 of 24 5,635,855

et
O
-

S.

5 s

to overe ure wrote v-v was v- - Fre very year see vre yar ree so year von
to owe vs a y vee v- we re- vee v- we vs vas - C Co y- ve
yme waymes yes O Co was was reas was o O - was O ye we vs O C as
was vivre were year v O. O. rees O - a Co was via o o v- - -
was vo o vee vs. ys ye as year as a vers v- C C C C C as
go Coo go visa was we was revie O O o o O vs. o vs. C o v

was ryana vrr was vote val- gree r- yes o o vers - was was v- we wre

to oo go tries van y via Co o ve ye ya r- C vires o O o O ves
D Cover was a rear ve ve y- vs ye ree year vall over go y was lo

over w w y ye was a yew via vra o year was vs C. O. O. vs. C
vame are re so do yen y Co. v. C. O see all real were was reas o co o
- wave vels v- a C C Co o yes van v- w vs C C or v- see
was yeo Co was v- as was v- we see v- van was Co. Cd Co. C C Co was
C CO v- see v- we sea snar O C C C C as via war C C ve
ye venera y vee vers vs was do o vra to co - a v-e yard Co ye
wn vars was v ve- rs was e- O. O. van re- we v O. O. wr- we was
ve- general via ea as v- was O o ve y-a was v- as C sea was wra o
C. oo vers ree r- year C owl was we were o O - C v- Co. v.-

q-e vario O pa y yeo as - yes y was a vamp C as C. Co o o ve
oo ow- was was v- sells vs. o O C C vs Co. were year to a ve

yans vasses as vana, a wra vs C Co an vs see - v- see o O vers
was versea var ye was van was en yr o O -- greav ya- to - - ver
wn wasya wa vas we re - C was a vira O was r- O Co war years ves

Orla vre were was ery were was ree v- w was were to que was a were war ve
to or a y year was as a v van vee oys vs vs Co. van Co was yes

a row 99 w w S2 CO - to 9 GSP

U.S. Patent Jun. 3, 1997 Sheet 13 of 24 5,635,855

SDI SDO

8 Bit ID
Bulk Erose
Shift Addr.
Addr, Bits

Shift Doto in
Doto Bits
Program
Verify

Shift Doto Out
Shift Data in
Doto Bits
Program
Verify

Shift Doto Out
Shift Addr,
Addr. Bits

Shift Dato in
Doto Bits
Program
Verify

Shift Doto Out
Shift Dato In
Doto Bits
Program
Verify

Shift Dato Out

Shift Doto in
Doto Bits
Program
Verify

Shift Doto Out

0001100000011
011 10000000001

0000
110 1000 1000

010100101001010

00000 000 . . . 111111 00101.. 111 10011011..... 10111

10111000 10001

010100101001010

100101.. 111 100111011..... 1011

t

O111001110 00010
100111011 10111
OOOOOOOOOOO 1000
OOOOOOOOOOO1011
O111001110 00010 FIG. 10a

U.S. Patent

8 Bit ID
Bulk Erose
Shift Addr.
Addr, Bits

Shift Doto in
Doto Bits
Program
Verify

Shift Doto Out
Shift Data in
Doto Bits
Program
Verify

Shift Doto Out
Shift Addr.
Addr, Bits

Shift Doto in
Doto Bits
Program
Verity

Shift Doto Out
Shift Doto in
Doto Bits
Progrom
Verify

Shift Doto Out

Addr. Bits
Shift Doto in
Doto Bits
Program
Verify

Shift Doto Out
Shift Dato In
Doto Bits
Program
Verify

Shift Doto Out

Jun. 3, 1997

Dev 1 ID Dev 2 ID Dev 3 ID
1002

Pass Shift Shift -1003
DeY 2 Addr. 0 Dev 3 Addr, 0
Shift Shift Shift -1005

1001

Sheet 14 of 24

y 1000

1004

5,635,855

Dev 1 Addr,0+Doto Dev 2 Addro Hi Dev 3 Addr, 0 Hi
1007
1008
1009
1010

1006

Dev 1 Addr. Dato Dev 2 AddrO Lo Dev 3 Addr. O Lo
Prog. Prog. Prog.-012

1013

1014
Pass Shift Shift
Dev 2 Addr. Dev 3 Addr. 1

1011

Dev 1 Addr2+Doto Dev 2 Addr1 Hi Dev 3 Addr, 1 Hi
Prog. Prog. Prog.

Shift Shift Shift

Dev 1 Addr,3+Data Dev 2 Addr1 0 Dev 3 Addr, 1 O
ProQ, Proq. Proq.

We r L i

Shift Shift Shift

Nop Nop Prog.
Nop Nop Ver H
Pass Pass Shift
Pass Pass Shift
Dev 3 Addr, 107 Lo

Nop Nop Ver L.
Pass Pass Shift

Dey 3 Addr, 107

FIG. Ob

U.S. Patent Jun. 3, 1997 Sheet 15 of 24 5,635,855

ispCAL Programming State Machine Instruction Set
instruction

00000

0000

OOO11

OO 111

01010

O1110

10100

Operation
NOP

SHIFTDATA
BULK ERASE
PROGRAM

VERIFY

FLOWTHRU
(PASS)

ARCH SHIFT

Description
No Operation Performed.
Clocks Data Into, Or Out Of, The Data Shift Register.
Eroses The Entire Device.

Programs The Serial Shift Register Doto into The Addressed Row,
Load Dato From The Selected Row into The Serial Shift Register.
Disables The Shift Register (SD=SDO).

Enables The Architecture Shift Register For Shifting Doto into Or
Out Of The Register.

FIG 10c

isplS Programming State Machine Instruction Set
Instruction

00000

00001

0000

000

001 11

0.1000

01001

01010

01.01

O 1110

Operation
NOP

ADDSHIFT

DATASHIFT

UBE

PRGMH

PRGML

PRCMSC

VER/LDH

VER/LDL

FLOWTHRU
(PASS)

Description

No Operation Performed.
Address Register Shift: Shifts Address into The Address Shift
Register From SDIN.
Data Register Shift: Shifts Doto into Or Out Of The Doto Serial
Shift Register.
User Bulk Erase: Erase The Entire Device.

Program High Order Bits: The Data in The Data Shift Register is
Programmed into The Addressed Row's High Order Bits.
Program Low Order Bits: The Doto in The Dota Shift Register is
Programmed into The Addressed Row's Low Order Bits.
Program Security Cell: Programs The Security Cell Of The Device.
Yerity/ad High Order Bits: Load The Data From The Selected
Row's High Order Bits into The Data Shift Register For
Verification.

Verity/load Low Order Bits: Load The Doto From The Selected
Row's Low Order Bits into The Dato Shift Register For
Verification.

Flow Through: Bypasses All The Internal Shift Registers And
SDOUT Becomes The Some AS SDN.

F.G. 10d

U.S. Patent Jun. 3, 1997 Sheet 16 of 24 5,635,855

spN -
MODE - l
SD) - l
SCK - l

FIG 11

Device Device 2 Device 3
in Pass Mode Address Shift Register Address Shift Register
SDI Bt 95 Bit O Bf 107 Bit O SDO

0000. OOOOOOOO 1 000. OOOOOOOO 1
sdi sco sci 202 sdo sci- 302 sdo

FG, 12

Data Register Of Device 1 Dato Register Of Device 2
Addr. Addr. Dato Dato Doto 203d Data

SDI Bit5 BO Bit 13 - BFO Bit/9 BO
OOOOOOOOO. . . . 1 1 11 1

sdi sdo
103

1 1 0 1 1 1 00 0 1 1 1 0 1 1 1 1 0 1 1 1 OOO
sdi sdo

Data Data Register Of Device 3 Data B159 BSDO
1 0 1 1 1 00 0 1 1 0 1 1 1 OOO 1 1 1 0 1 1 1 00 0 1 1 1 0,..., 0 1 1 0 1 1 1 0001
sdi sdo

203b

FG, 13

U.S. Patent Jun. 3, 1997 Sheet 17 of 24 5,635,855

1402 DLD File
OS Shown On

Fig. 4

1405

1404
Scies Redd and Porse

Fig. 6,7 and 8, the JEDEC Files

F.G. 14

U.S. Patent Jun. 3, 1997

15000

1502
Set the Serial Chain

to die State

Read and Compare
the Device IDs.

Set the Seriol Chain
to Shift State

Send the Erase
instructions

Set the Serial Chain
to Execute State

Stort the Erose
Timing

F.G. 15a

1503

504

1505

1506

1507

Sheet 18 of 24 5,635,855
500b

1508

Delay for Erase Time

1509
Set the Serial Choin

to Shift State

T-510
Send the Shift Address

instructions

1511
Set the Seriol Choin
to Execute Stote

512
Send the Address

Doto

53
Set the Seriol Choin

to Shift Stote

Send the Shift Dot
instructions

154

515
Set the Serial Chain
to Execute State

FIG. 15b

U.S. Patent Jun. 3, 1997 Sheet 19 of 24 5,635,855

1500c

Send the Row
Doto

Set the Serial Chain
to Shift State

A 1 Dota Row

1516

1517

1518

NO

Send the Programming
instructions

Set the Serial Chain
to Execute State

Start the Programming
Timing

Delay for Programming
Time

Set the Serial Chain
to Shift State

1519

1520

1521

1522

1523

FIG. 15c

U.S. Patent Jun. 3, 1997 Sheet 20 of 24 5,635,855

1500 M
1524

Send the Verify
instructions

1525
1500 Set the Serial Chain e

to Execute State

1532
1526 4.

Set the Seriol Chain Start the Verify to Shift State

1527 1533
Delay for Verify St. S.

Timing to
STEP 1532

528
Set the Seriol Choin

to Shift Stote 1514

1529 s

Send the Shift Doto End of spSIREy
instructions P

1530
Set the Serial Chain
to Execute State

1531 F.G. 15e
Read and Compare

the Doto

F.G. 15c.

U.S. Patent Jun. 3, 1997 Sheet 21 of 24 5,635,855

1601 1600

1600b

602
8 Bit IDs

1612
Doto Blts -

1603
Bulk Erose instructions

1615
Program Instructions

1604
Shift Address instructions

1614
Verify instructions

605
Address Bits

1615
Shift Doto instructions

1606
Shift Doto instructions

1607 1604
Doto Bits

1608
Program instructions

1609
Verify instructions

1610
Shift Doto instructions FG. 16b

1611
Shift Doto instructions

FIG. 16a

U.S. Patent Jun. 3, 1997 Sheet 22 of 24 5,635,855

(e) 17000
1701 doto_length O-24 1 OO

Store Device 3 ID OOOOOOOOOOOOOOOOOOOOOO 11

1702 datollength=15 go?
Store Device 3

Bulk Erose instruction OOOOOOOOOOOOO 1

1703 s dotallength 2=15 1p)
sitation OOOOOOOOOOOOOO

1004
1704 data length(3)=204 if address length of dev3=108

Store Device 3
Address Bits 000. 00 00 000 OOO 1

1705 data length (4-15' sigs... oooooooooooo Shift Doto instructions OOOOOOOOOOOOOO

aws 1006 '70s , , dotallength 5=378 data length of dev3=160
Oe NC 000000 000.000000.0001101 1000..10001

1707 data length(s)=15
Store Device 5

Program instructions OOOOOOOOOOOO 111
1008

1708 Store Device 3 dotallength 7=15
Oe UCVC Verify instructions of of OO

give oil of of Shift Doto instructions 0000000000000 10

1710 dato length9=15 1010 steps... oooooooof of Shift Doto instructions OOOOOOOOOOOOO 10

FG, a

U.S. Patent Jun. 3, 1997 Sheet 23 of 24 5,635,855

1700b

f
data length 10=378 data length of dev3=160

OOOOOO OOO...OOOOOOOOO1 OO 1 1 0 1 1..... O

Program Instructions

Verify instructions

1714
Shift Doto instructions

1011 1711

data length 11=15 1012
OOOOOOOOOOOO 1 1

1712

of of
5 1013 1713 data length 12=1

OOOOOOOOOO odoocoolietof
1014

s dotallength 13=15
OOOOOOOOOOOOO 10 cooooooooooof

FIG 1b.

5,635,855 Sheet 24 of 24 Jun. 3, 1997 U.S. Patent

q?I ?I,

5,635,855
1.

METHOD FOR SIMULTANEOUS
PROGRAMMING OF INSYSTEM

PROGRAMMABLE INTEGRATED CIRCUITS

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to programmable integrated

circuits, and in particular, the present invention relates to
techniques for programming multiple programmable
devices simultaneously.

2. Discussion of the Related Art
Programmable devices that can be programmed and

reprogrammed without being removed from its application
environment are widely preferred because programming and
reprogramming of such devices can be performed with ease.
One type of such devices is the "In-system programmable
logic devices” or "ISPPLDs”, available from Lattice Semi
conductor Corporation. (To simplify reference, in the fol
lowing description, such and similar devices are all referred
to as "ISPPLDs”. It should be understood, however, that the
teachings in the following description are applicable to all
types of field programmable devices, including program
mable logic devices, programmable memories, and pro
grammable analog circuits). The design and use of ISPPLDs
are disclosed in the prior art, e.g. (i) U.S. Pat. No. 5,329,179
entitled "Arrangement For Parallel Programming Of
In-systemProgrammable ICLogical Devices", to Tang etal,
filed on Oct. 5, 1992 and issued on Jul. 12, 1994. (ii) U.S.
Pat. No. 5.237,218, entitled "Structure and Method for
Multiplexing Pins for In-system Programming”, to G.
Josephson etal, filed on May 3, 1991 and issued on Aug. 13,
1993; (iii) U.S. Pat. No. 4,879,688, entitled "In-system
Programmable Logic Devices” to Turner etal, filed on May
13, 1986, issued on Nov. 7, 1989; and (iv) U.S. Pat. No.
4,855,954, entitled "In-system Programmable Logic Device
with Four Dedicated Terminals' to Turner etal, filed on Oct.
25, 1988, and issued on Aug. 8, 1989.

In the prior art, each ISPPLD in a system board contain
ing multiple ISP PLDs is individually and sequentially
programmed. To program multiple ISP PLDs simulta
neously requires both additional hardware and special con
figurations of the ISPPLDs. For example, where simulta
neous programming of multiple ISP PLDs is possible,
additional circuits for signal multiplexing are typically
required. When devices in an application are programmed
individually and sequentially, the devices to be programmed
are chained serially and hence the total programming time of
the serial chain of devices is the sum of the times required
to program each device individually.
An ISP PLD contains a large number of programmable

logic components, e.g. the "min-terms" of a programmable
gate array. In some ISP PLDs, a linear address space is
provided, and the programmable logic components of an ISP
PLD are programmed in ascending address order until all the
programmable logic components of the entire ISPPLD are
programmed. Thus, even when simultaneous programming
is provided, the total programming time of a system board
is often determined by the sum of the time required to
program that ISP PLD on the system board which has the
most number of programmable components, and the time
required to send data to all the ISPPLDs of the serial chain.

In the prior art, a "programming command generator” is
given a data file which contains only the pattern necessary
to program the ISP PLDs on a given system board. The
programming command generator derives from the data file
all the device dependent parameters, and provides the com
mands for the programming to occur.

10

15

20

25

30

35

45

50

55

65

2
SUMMARY OF THE INVENTION

In accordance with the present invention, a method for
programming, simultaneously, multiple field programmable
integrated circuits or devices is provided. According to the
present invention, such method includes the steps of: (i)
connecting field programmable devices serially in a chain
configuration; (ii) constructing a data stream file which
contains a data stream for programming the field program
mable devices simultaneously, such that the programmable
devices are simultaneously scheduled under the data stream
(a) to receive instructions, (b) to shift programming data into
the field programmable devices, (c) to execute instructions
and (d) to shift data out of the field programmable devices;
(iii) retrieving from each of a number of program data files,
for each of the field programming devices, an individual
programming data stream; (iv) filling the data stream file
with programming data from each of the individual pro
gramming data streams thus retrieved; and (v) programming
the field programmable devices simultaneously using the
data stream file thus composed.

In accordance with a further aspect of the present
invention, the individual programming data stream includes
programming instructions and programming data. Under
this further aspect, programming data are sorted such that
rows having a predetermined data pattern (e.g. all '1's) are
placed behind rows not having the predetermined data
pattern. In one embodiment, the predetermined data pattern
corresponds to a default data pattern of the field program
mable device when it is unprogrammed. In accordance with
the present invention, programming for such rows can be
omitted.
The presentinvention achieves the advantage of program

ming simultaneously the devices in a serially connected
chain of field programmable devices, thereby minimizing
total programming time. The present invention achieves
such advantage using conventional programming hardware
without requiring additional circuitry.

In accordance with one aspect of the present invention,
the devices programmed by the method of the present
invention are not necessarily programmed in ascending or
descending address order. By grouping programming data
units (e.g. rows) in accordance to whether a predetermined
pattern exists in the programming data in a given program
ming unit, so as to allowed such programming unit to be
omitted, minimum programming time can be realized. In the
present invention, substantial savings in programming time
can be achieved by omitting programming in such program
ming unit having such predetermined data pattern.
The present invention further reduces programming time

by lining up the addresses of rows which do not require
programming.

This invention simplifies the software program portion of
a programming command generator by the use of a com
posite file (ispSTREAM file) which includes the ID stream,
the address stream, the instruction stream and the program
ming data stream. When applying these data streams to
multiple ISP PLDs simultaneously, set-up times of the
serially connected ISPPLDs are common, thereby achieving
Substantial savings in programming time.

in accordance with yet another aspect of the present
invention, a data file is prepared representing a data stream
including programming data bit patterns, programming
addresses and programming instructions. Preparation of
such a data file simplifies the task for the Programming
Command Generator.
The present invention is better understood upon consid

eration of the detailed description below and accompanying
drawings.

5,635,855
3

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an array map of an ispGAL22V10 device.
FIG. 2 shows an array map of an ispI SI 1016 device.
FIG. 3 shows an array map of an isplSI 1032 device.
FIG. 4 shows an embodiment of the present invention in

which three ISPPLDS 401, 402 and 403 are connected to a
programming command generator 404.

FIG. 5 shows a configuration description file 500 for
specifying programming of the ISPPLDs 401, 402 and 403
of FIG. 4.

FIG. 6 is a JEDEC file illustrative of the “22V10.jed" file
referenced in FIG. S for ISP PLD 401.
FIG. 7 is a JEDEC file illustrative of the “1016.jed” file

referenced in FIG. 5 for ISP PLD 402.
FIG. 8 is a JEDEC file illustrative of the “1032.jed” file

referenced in FIG. S for ISP PLD 403.
FIG. 9 illustrates the composite array map for serially

connected chain 400 of FIG. 4.

FIG. 10a shows actual instructions and program data bits,
which are derived from the JEDEC files of FIGS. 6-8,
provided to ispSTREAM file 1000 of FIG. 10b below.

FIG. 10b shows the format of an ispSTREAM file 1000
for serially connected chain 400 of FIG. 4; serially con
nected chain 400 includes PLD ISPs 401, 402 and 403.

FIG. 10c shows the instruction set executable by the
programming state machine of an ispGAL22V10 type
device.

FIG. 10d shows the instruction set executable by the
programming state machine of an isp SI type device.

FIG. 11 is a signal protocol diagram showing transitions
of signals ispEN. MODE, SCLK, and SDI when placing an
ISP PLD into a 'shift' state or an “execute' State.

FIG. 12 is a schematic diagram showing address bits that
are shifted into shift address registers 202 and 302.

FIG.13 shows the contents of data registers 103,203a and
303a, after executing step 1516 illustrated in FIG. 15c.

FIG. 14 is a flow diagram 1400 illustrating the creation of
an ispSTREAM file in accordance with the present inven
tion.

FIGS. 15a shows a portion 1500a of a flow diagram 1500,
which shows a method for processing and downloading data
of ispSTREAM file 1000 to target devices of serially con
nected chain 400 of FIG. 4.
FIGS. 15b shows a portion 1500b of a flow diagram 1500,

which shows a method of processing and downloading data
of ispSTREAM file 1000 to target devices of serially con
nected chain 400 of FIG. 4.
FIGS. 15c shows a portion 1500c of a flow diagram 1500,

which shows a method for processing and downloading data
of ispSTREAM file 1000 to target devices of serially con
nected chain 400 of FIG. 4.
FIGS. 15d shows a portion 1500d of a flow diagram 1500,

which shows a method for processing and downloading data
of ispSTREAM file 1000 to target devices of serially con
nected chain 400 of FIG. 4.

FIGS. 15e shows a portion 1500e of a flow diagram 1500,
which shows a method for processing and downloading data
of ispSTREAM file 1000 to target devices of serially con
nected chain 400 of FIG. 4.

FIG. 16a is a portion 1600a of a flow diagram 1600 which
illustrates allocation of the ispSTREAM file 1000 shown in
FIGS. 10a and 10b.

5

10

15

20

25

30

35

45

50

55

60

65

4
FIG. 16b is a portion 1600b of a flow diagram 1600 which

illustrates allocation of the ispSTREAM file 1000 shown in
FIGS. 10a and 10b.

FIG. 17a shows, as a portion 1700a of a flow diagram
1700, on the left hand side, steps 1701-1714 taken to fill
program data into ispSTREAM file 1000 and, on the right
side, actual program data which are filled into data structures
1001-1014 of ispSTREAM file 1000 shown in FIG. 10b.

FIG. 17b shows, as a portion 1700b of a flow diagram
1700, on the left hand side, steps 1701-1714 taken to fill
program data into ispSTREAM file 1000 and, on the right
side, actual program data which are filled into data structures
1001-1014 of ispSTREAM file 1000 shown in FIG. 10b.

FIG. 18a shows the states of the three ID registers 104,
204 and 304 in ISP PLDs 401, 402 and 403 of serially
connected chain 400.

FIG. 18b shows the contents of 5-bit instruction registers
105, 205 and 305 of ISPPLDs 401-403, respectively, after
the shift address instructions are downloaded at step 1510.

FIG. 18c shows the contents of 5-bit instruction registers
105, 205 and 305 of ISPPLDs 401-403, respectively, after
the programming instructions are downloaded at step 1519.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

One embodiment of the present invention, which is
described in detail below, is provided by a software program
written in the familiar “C” programming language. This
software program, which is subject to copyright protection,
is provided in source code form in the accompanying
Appendix A. While the copyright owner permits anyone to
make facsimile copies of this source code, as it appears in
the files of the U.S. Patent and Trademark Office in con
nection with this patent document or patent disclosure, the
copyright owner explicitly reserves all other rights with
respect to this software program.
The present invention is described herein by reference to

two types of ISPPLDs, both available from Lattice Semi
conductor Corporation, the Assignee of this Patent Appli
cation. The first ISP PLD type is represented by the
ispGAL22V10, which includes four programming pins:
Mode, SCLK (Serial Clock), SDI (Serial Data In), and SDO
(Serial Data Out). The operations of these programmingpins
are described in the "ISP Manual 1994', available from
Lattice Semiconductor Corporation. The ispGAL22V10
device is placed in the programming mode when the Mode
signal is asserted, while the signal on the SCLK pin is
pulsed. Once in the programming mode, programming
operations are controlled by the programmer via signals on
the Mode and SDI pins.
The second ISPPLD type is the Lattice isplSIdevices. In

the ispLSI devices, an ISP PLD is programmed using five
pins, which are designated: ispEN ("in-system programming
Enable'), Mode, SCLK, SDI, and SDO. Unlike a
ispGAL22V10 type device, an ispLSI type device is placed
in the programming mode when the ispEN pin is asserted.
Once in the programming mode, programming is controlled
by the Mode, SDI and SCLK pins. The structures and
operations of ispLSI devices are also fully described in the
ISP Manual 1994 referenced above.

FIG. 4 shows an embodiment of the present invention in
which three ISPPLDS 401, 402 and 403 are connected to a
programming command generator 404. As shown in FIG. 4,
ISP PLD 401, 402 and 403 have their SDI and SDO
terminals connected in a serial fashion ("serial chain” 400),

5,635,855
S

So that serial programming data from programming com
mand generator 404 to ISPPLD 403 can be provided via the
SDI and SDO terminals of ISPPLDs 401 and 402. Likewise,
serial programming data can be shifted into ISP PLD 402
through the SDI and SDO terminals of ISPPLD 401. This
Serial connection is known as a "serial chain'. In this
embodiment, ISPPLD 401 is an ispGAL22V10 device, ISP
PLD 402 is an ispLSI type device (specifically, an ispISI
1016) and ISP PLD 403 is also an ispISI type device (an
isplSI 1032). The Mode and SCLK pins of ISPPLDs 401,
402 and 403 are commonly connected. In addition, the ispEn
pins of ISP PLDs 402 and 403 are commonly connected.

FIG. 1 shows an array map of the ispCAL22V10 device.
As shown in FIG. 1, an ispGAL22V10 device is pro
grammed by setting programmable fuses for a 44x132-bit
AND array and a 64-bit “user electronic signature” (UES).
Programming is accomplished one row at a time by serially
shifting a 6-bitrow address and 132 bits of program data bits
into address/data shift register 102 through the SDI terminal.
The 6-bit row address specifies which of the 44 rows of the
AND array, or the 64-bit UES, is to be programmed. The 132
bits of programming bits are then provided to implement the
desired configuration of the AND array at the specified row
or the UES. An 8-bit ID shift register and a 20-bit architec
tural shift register 104 are provided, respectively, for storing
an identification pattern and for specifying configuration
information of the ispGAL22V10 device.

FIG. 2 shows the array map of an ispi SI 1016 device. As
shown in FIG. 2, an ispLSI 1016 device includes a 96x160
bit ECMOS (Electrically erasable Complementary Metal
Oxide Semiconductor) cell array 201. As in the
ispCAL22V10 device, cell array of the ispISI 1016 device
is programmed row by row. However, instead of specifying
a multi-bit address, a 96-bit address shift register 202 is
provided. Each bit in address shift register 202 corresponds
to a 160-bitrow in cellarray 201. A 160-bit data register 203,
divided into 80-bit (half-row) high order register 203a and
80-bit low order shift register 203b, is provided for holding
the program data bits. Since separate commands are required
to load or read each half-row in data register 203 (i.e. a
separate command is required for loading each of data
registers 203a and 203b), for the purpose of the remaining
discussion, the data input and output unit of ispISI 1016
device can be considered to be the 80-bit half-roW. To
program the isp SI 1016 device, a single '1' bit is shifted
into address shift register 202. The position of the single '1'
bit in address shift register 202 indicates the row to be
programmed. Programming is carried out by two program
instructions, “PRGMH” (program high half-row) or
"PRGML” (program low half-row), each instruction writes
a half-row program data bits in the corresponding one of
data registers 203a and 203b into the corresponding half
row at the address indicated by the single '1' bit in address
register 202. An 8-bit ID shift register 204 is provided for
holding an 8-bit identification code.

Programming an ispILSI 1032 device is similar to pro
gramming the isp SI 1016 device described above with
respect to FIG. 2. FIG. 3 shows the array map of an ispISI
1032 device. An isplSI 1032 device includes a 108 by
320-bit ECMOS array 301. Thus, the ispLSI 1032 device
includes a 108-bit address shift register 302 and a 320-bit
data register 303, which is divided into higher order half-row
data register 303a and low order half-row data register 303b.
Again, since separate commands are required for loading or
reading each of half-row data registers 303a and 303b, the
input and output unit for data transfer in such the ispILSI
1032 device is 160 bits.

O

15

20

25

30

35

45

50

55

65

6
The method of the present invention first creates in

memory an "ispSTREAM" file, which is a file containing
both programming instructions and data, in the order the
programming instructions and the data are subsequently
used to program the ISPPLDs simultaneously. The steps for
creating such a file are illustrated by FIG. 14. Step 1401,
which represents a subroutine “pack jedec file” in the
source code provided in Appendix A, begins compilation of
the ispSTREAM file by invoking a subroutine "dl read
dildfile'. In FIG. 14, execution of subroutine "d read
dildfile” is represented by step 1402. At step 1402, a con
figuration description file (identified by the "dild” file
extension) is read. An example of such a configuration
description file is shown in FIG. 5. As shown in FIG. 5,
configuration description file 500 includes 3 lines of text,
each line corresponding to one device in the serial chain 400
of FIG. 4 to be programmed. On each line of configuration
description file 500 is provided three fields, which corre
spond to a (i) device field, (ii) a programming directive field,
and (iii) a programming bit pattern field (i.e. the name of a
“JEDEC file"). JEDEC is an industry standard format for
specifying test vectors known to those skilled in the art. The
device field identifies the type of the device to be
programmed, so that device-specific commands and param
eters can be properly handled by programming command
generator 404. In FIG. 5, configuration description file 500
specifies 22V10 (i.e. the ispCa122v10 device), 1016 (an
ispILSI device with 16 generic logic blocks) and 1032 (an
ispLSI device with 32 generic logic blocks). At present, four
types of programming directives are used: (i) “PV", which
indicates both programming and verification are to be per
formed; (ii) “NOP", which indicates no operation; (iii) “V”,
which indicates only verificationis to be performed, and (iv)
“E”, which indicates only the function "erase" is to be
performed. Verification involves reading the programming
data from a programmed logic device and comparing the
data thus read-back with the expected bit pattern. The
function "erase' erases all programming from a ISP PLD.
The "JEDEC file” field of configuration description file

500 provides the name of the JEDEC file containing a
programming bit pattern for use by Programming command
generator 404 when carrying out the specified programming
directive. In addition, step 1402 (FIG.14) identifies, for each
device listed on the configuration description file 500, the
number of rows and the size in bit number of each row. Step
1402 also identifies which of the devices in the serially
connected chain 400 has the largest number of program
mable units, defined as the largest number of rows in the
ispGAL22V10 type devices, or the largest number of half
rows in the isplSI type devices, whichever is larger.
Upon completion of Step 1402 described above, step

1403 is invoked to calculate a "composite array map". The
present invention considers serially connected chain 400 as
if it is a device having a number of rows equal to the largest
number of programmable units, as identified in step 1402
above. For example, the serially connected chain of FIG. 4
is considered a device having (i) 45 rows (rows 0-44) of 378
bits; (ii) one row (row 45) of 260 bits, (iii) 146 (rows
46-191) of 240 bits, and (iv) 24 rows (rows 192-215) of 160
bits. FIG. 9 illustrates this composite array map for the
serially connected chain 400 of FIG. 4. As shown in FIG. 9,
in rows 0-44, one row from ISPPLD 401 and two half-rows
from each of the ISPPLDs 402 and 403 can be programmed
simultaneously. Thus, the total number of bits programmed
in each of rows 0-44 would be the sum of 138 bits, 80 bits
and 160 bits, i.e. 378 bits. Row 45 represents the program
ming of the 20 architectural bits and one half-row each of

5,635,855
7

ISP PLDS 402 and 403. Thus, the number of bits to be
programmed in row 45 is the sum of 20, 80 and 160, i.e. 260
bits. For rows 46-191, since ISP PLD 401 does not have
these rows, the number of bits to be programmed is the sum
of two half-rows of ISP PLDS 402 and 403. Thus, the
number of bits programmed in rows 46-191 is the sum of 80
and 160, i.e. 240 bits. Finally, in rows 192-215, only ISP
PLD 403 need to be programmed. Hence, the number of bits
to be programmed in rows 192–215 is one half-row of ISP
PLD 403, i.e. 160 bits.

According to this composite array map, a bit stream file
(“ispSTREAM file") is created in memory. The isp
STREAM file holds the bit stream data necessary to shift
data and instructions into the serially connected chain of ISP
PLDs (e.g. serially connected chain 400 of FIG. 4) to be
programmed. FIG. 10b shows the format of anispSTREAM
file 1000 for the serially connected chain 400 of ISPPLDs
401-403 of FIG. 4.
To build ispSTREAM file 1000, the memory cells

required for the ispSTREAM file is allocated. To perform
this allocation, the procedure outlined in the flow diagram
1600, which is shown in two portions 1600a and 1600b in
FIGS. 16a and 16b, is used. In FIG.16a, step 1602 allocates
24 bits. These 24 bits are provided to contain the three 8-bit
ID code for each of ISP PLDs 401, 402 and 403. At step
1603, 15 bits are allocated for holding a 5-bit instruction of
each of ISP PLDS 401, 402 and 403 for a bulk erase
instruction. The instruction sets executable by the state
machines of the ispCAL22V10 type devices (e.g. ISPPLD
401) and the ispLSI type devices (e.g. ISP PLDs 402 and
403) are shown in FIGS. 10c and 10d respectively. FIGS.
10c and 10d provide, for each instruction, the opcode for the
instruction, a mnemonic of the instruction and a short
description of the function of the instruction. As shown in
FIG. 10b, for example, the bulk erase instruction in an
ispLSI type device has an opcode "00011 (binary) and an
mnemonic"UBE". The UBEinstruction erases the program
ming in the entire device by setting all the programmable
bits to a binary 1.
Then, at step 1604, 15 bits (bits 1003) are allocated for

shifting into ISPPLDs 402 and 403 the 5-bit “ADDSHFT"
instruction (FIG. 10c), and shifting into ISP PLD 401 the
5-bit "FLOWTHRU" (or "PASS”) instruction. The
FLOWTHRU instruction is provided ISPPLD 401 because
an ispGAL22V10 type device does not have an address
register, address being specified as the first 6 bits of data
register 103. Then, 204 bits (bits 1004) are allocated, at step
1605 for the actual address bits to be shifted in the address
registers 202 and 302 of ISPPLDs 402 and 403, respective.
Since ISP PLDS 402 and 403 have 96 and 108 rows,
respectively, the total number of bits allocated in bits 1004
for the actual address bits of SPPLDS 402 and 403 is 204.
At step 1606, 15 bits (bits 1005) are allocated for the data
shifting instructions ("DATASHFT" or “SHIFT DATA" in
FIGS. 10c and 10d) for shifting data bits into data registers
102a, 203a and 303a. Then, at step 1607, a number of bits
(bits 1006) are allocated for data to be shifted into in the first
row (i.e. row 0) of composite array 900 (FIG. 9) constructed
above. In the embodiment of FIG. 4, as explained above,
row 0 includes 378 data bits, including 6 address bits and
132 data bits for ISPPLD 401, 80 data bits for ISPPLD 402
and 160 data bits for ISPPLD 403. In the next two steps, i.e.
steps 1608 and 1609, 30 bits (bits 1007 and 1008) are
allocated for the program instructions (“PROGRAM" and
“PRGMH") and the verify instructions (“VER/LDH" or
“VERIFY") used in programming ISP PLDs 401-403.
PRGMH and VER/LDH are instructions which program and

10

15

20

25

30

35

45

50

55

65

8
verify, respectively, using data in the higher half-row portion
of the data registers of the ispLSI devices (e.g. half-row data
registers 203a and 303a). Step 1610 allocates 15 bits (bits
1010) for holding the “DATASHFT" and “SHIFT DATA"
instructions for shifting data out of data registers PLD ISPs
402 and 403, and ISP PLD 401 respectively. Steps
1611-1615 (steps 1612-1615 shown in FIG. 16b) are steps
corresponding to steps 1606-1610 described above. Steps
1611-1615 are provided for processing the next row of ISP
PLD 401 and the lower 160-bit and 360-bit half-rows of ISP
PLDs 402 and 403, at the address specified by address
registers 202 and 302, respectively. Steps 1611-1615 allo
cate in the ispSTREAM file structures 1010-1014. Steps
1604-1615 are repeated for rows 2 to 215 of composite array
map 900 until row 215 (see FIG. 9) is processed. This
repetitive loop and the termination decision point are rep
resented by decision point 1616. For row 45, the data bits
allocated for step 1612 is 260, as discussed above. Similarly,
for rows 46-191 the data bits allocated for steps 1607 and
1612 are 240 bits. For rows 192-215, the data bits allocated
for steps 1607 and 1612 are 160 bits. For rows 192-195,
since all rows in ISPPLD 402 are programmed, the number
of bits allocated for the address bits of step 1605 is 108,
which is the number of Iows for ISP PLD 403.

Referring back to FIG. 14, upon allocation of isp
STREAM file 1000, step 1403 is completed. Then, the next
step, i.e. step 1404 (execution of subroutine "pack jedec
files" continues), invokes a subroutine "read jedec files".
Step 1404 reads the JEDEC files referenced in configuration
description file 500 one by one, and converts the information
in each JEDEC file (provided in ASCII characters) into a
packed binary map in memory, organized row by row. As
each JEDEC file is read, each row (for ispGAL22V10 type
device) or half-row (for ispLSI type device) that is all '1's
(i.e. all program bits in the row are binary '1's) is marked.
In a preferred embodiment, after all program bits in the
JEDEC file are read into the packed binary map in memory,
the rows or half-rows in the packed binary map are sorted.
In ispGAL22V10 devices, the rows are sorted such that the
rows that are not all binary '1's are arranged in ascending
address order, followed by the all '1's rows in ascending
address order. In ispILSI devices, the rows are sorted in the
data structure in the order: 1) in ascending address order, all
rows which are not all '1's in both the higher and the lower
half-rows of an address; (ii) in ascending address order, all
rows which have all '1's in one of the half-rows, and not all
1's in the other half-row; and (iii) in ascending address
order, all rows which are all '1's in both half-words.
FIGS. 6, 7 and 8 are JEDEC files illustrative of the

JEDEC files referenced in FIG.5 for ISPPLDs 401, 402 and
403 respectively. As shown in FIG. 6, a JEDEC file for an
ispGAL22V10 device reads program bits from a 44x132-bit
array 601. Each column of bit array 601 corresponds to the
132 programming bits for a row in the AND array 101 of
FIG. 1. In combination with a 6-bit address generated by
programming command generator 404 (FIG. 4), these 132
bits programming bits are shifted into address/data shift
register 102 to program a row of AND array 101. The
remaining portions of the JEDEC file provides information
such as the 20 architectural bits, and the 64-bit UES. The
format for a JEDEC file used with an ispGAL22V10 device
is known to one skilled in the art.

FIG. 7 shows a JEDEC file for an isplSI 1016 device,
illustrative of the “1016.jed” file referenced in FIG.5 for ISP
PLD 402 of FIG. 4. As shown in FIG. 7, program bits are
read by Programming command generator 404 from a
192X80-bit array 701. Unlike array 601, i.e. the program bits

5,635,855

array of a JEDEC file for an ispCAL22V10 device, where
each column represents a row of programmable components
in the device, every two rows of array 701 represent the
program bits for either the higher order half-row or the lower
order half-row of a corresponding row in the ECMOS array
of the ispILSI device. Programming is achieved when the
program bits are downloaded, by executing the appropriate
programming command, onto the target ISPPLD from data
registers 203a and 203b. FIG. 8, which shows a JEDEC file
illustrative of the JEDEC file “1016.jed” referenced in FIG.
5 for ISPPLD 402, contains a 108x160-bit array 801 which
is interpreted in the same manner as array 701 of FIG. 7. Of
course, every two rows in array 801 has 160 bits, corre
sponding to either the 160-bit higher order half-row, or the
160-bit lower order half-row, for a 320-bit row of the
ECMOS array 201 of aispLSI 1032 device. As an example,
FIG. 7 shows that the higher order half-row of program bits
at address 7 is all '1's. Similarly, FIG. 8 shows that both
half-rows of the program bits at address 64 are all '1's. The
next step in step 1404 is to fill actual program and command
data into the ispSTREAM file 1000. The procedure for
filling ispSTREAM file 1000 is provided as procedure 1700
in FIGS. 17a and 17.

FIGS. 17a and 17b are portions 1700a and 1700b of
procedure 1700 respectively. FIG. 17a shows, on the left
hand side, steps 1701-1710 taken to fill program data into
ispSTREAM file 1000 and, on the right side, the actual
program bits which are filled into data structures 10011
1019 of ispSTREAM file 1000 shown in FIG. 10b. FIG. 17b
shows, on the left hand side, steps 1711-1717 taken to fill
program data into ispSTREAM file 1000 and, on the right
side, the actual program bits which are filled into data
structures 1011-1014 of ispSTREAM file 1000 shown in
FIG. 10b. Initially, as shown in FIG. 17a, program bits
related to the last device in serially connected chain 400 is
first processed. Thus, at step 1701, the 8-bit ID code filled
the last 8 bits in data structure 1001 of ispSTREAM file
1000. Then, at the step 1702, the “UBE" instruction (user
bulk erase) is entered into the corresponding 5 bits (i.e. the
last 5 bits) of data structure 1002. The opcode corresponding
to the "ADDSHIFT" (address shift) instructionis then, at step
1703, entered into the last 5 bits of data structure 1003. The
address bits to be shifted into address register 302 are
provided in the last 108 bits of the data structure 1004. The
opcode corresponding to the "DATASHFT" (data shift)
instruction is then provided, at step 1705, to the last 5 bits
of data structure 1005. Then, at step 1706, 160 program data
bits, corresponding to the higher order half-row of the first
row in the packed binary map for ISPPLD 403, are provided
to the last 160 bits of the data structure 1006. At steps 1707
and 1708, the opcodes for "PRGMH” (program higher order
half-row) and “VER/LDH" (verify or load higher order
half-row) are provided into the corresponding bits of data
structures 1007 and 1008. At step 1709, the opcode for the
"DATASHFT" instruction is provided in the corresponding
bits of data Structure 1009. This "DATASHIFT' instruction
will be used to shift out the higher order half-word of ISP
PLD 403, at the address specified in address register 303, for
verification. The steps 1710-1714 provide, for the lower
half-row of anispLSI device, steps for filling the instruction
opcodes and program data bits in data structures 1010-1014.
Step 1715 tests if the command and program data bits for all
rows of ISPPLD 403 are provided to ispSTREAM file 1000.
If not all instructions and program data bits of ISPPLD 403
are provided to ispSTREAM file 1000, process 1700 repeats
steps 1703-1714, until done. When all instructions and
program data bits of this last device in serially connected

O

15

20

25

30

35

50

55

65

10
chain 400 are provided to ispSTREAM file 1000, the next
JEDEC file in configuration description 500 is read. Steps
1701-1715 are then repeated for filling in actual command
and program data bits in ispSTREAM file 1000 correspond
ing to the next device in the serially connected chain 400 of
FIG. 4. Process 1700 continues until commands and pro
gram data bits for all devices in serially connected chain 400
are provided into ispSTREAM file 1000. The result of
process 1700 on serially connected chain 400, using pro
gram data bits from FIGS. 6-8, are shown in FIG. 10b. At
this point, the subroutine "pack jedec files' is completed.

Simultaneous programming for the devices in the serially
connected chain 400 can proceed then from the ispSTREAM
file 100 thus filled. In this embodiment, a procedure
"ispstream pump' is provided for performing program
ming and verification from the ispSTREAM file. The
ispstream pump procedure is provided in source code form
in Appendix A. A hardware and software system which is
capable of downloading the output data of the ispstream
pump procedure for programming and verification in the
devices of the serially connected chain is described in the
ISP Manual 1994 referenced above. In particular, the hard
ware and software system and the operational procedures for
operating such a system are discussed in Chapter3 of the ISP
Manual 1994, entitled "In-System Programming on a PC or
Sun Workstation”. The teachings of ISP Manual 1994 are
hereby incorporated by reference in it's entirety.

Specifically, a procedure for processing and downloading
the data of ispSTREAM file 1000 to target devices in the
serially connected chain 400 of FIG. 4 is illustrated in the
flow diagram 1500, which is shown in 5 portions
1500a-1400e in FIGS. 15a-e. FIG. 15a shows a portion
1500a, including steps 1501-1507 of process 1500. As
shown in FIG. 15a, at step 1501, the subroutine "ispstream
pump” is invoked to begin the process of processing and
downloading data fromispSTREAM file 1000 to the target
devices of serially connected chain 400 of FIG. 4. The
subroutine "ispstream pump” calls at step 1502, a subrou
tine "move to id state', which causes all devices in the
serially connected chain 400 to go into idle state. Idle state
is entered when Programming command generator 404
(FIG. 4) provides the following signal protocol: (i) setting
ispEN, SDI, SCLK and MODE signals eachtologic low; (ii)
following (i), setting MODE signal to logic high; (iii)
following (ii), pulsing signal SCLK, and (iv) following (iii),
resetting MODE signal to logic low.

FIG. 18a shows the states of the three ID registers 104,
204 and 304 in ISP PLDs 401, 402 and 403 of serially
connected chain 400. At step 1503, command program
generator 404 is caused to pulse the SCLK signal 24 times,
so as to output as the values of signal SDO the respective ID
codes of ISP PLDs 401, 402 and 403. These ID codes are
then compared with the ID code values in data structure
1001 of ispSTREAM file 1000. At step 1504, the
ispstream pump subroutines calls the subroutine "execute
O” to place the devices in serially connected chain 400 into
the “shift” state. The shift state is entered by causing
command program generator 404 to execute the protocol: (i)
setting ispEN, SDI, SCLK, MODE signals at logic low; (ii)
thereafter, setting MODE and SDI signals to logic high; (iii)
pulsing the SCLK signal once, and (iv) bringing the MODE
and SDI signals tologic low. In the "shift” state, an in-circuit
programmable device is ready to receive instructions for
executing a commandin a command register of the in-circuit
programmable device.
At step 1505, the instructions for bulk erase, i.e. "BULK

ERASE", for anispCAL22V10 type device and “UBE", for

5,635,855
11

an ispI SI type device, are taken from data structure 1002 of
ispSTREAM file 1000 and downloaded through signal SDI
into ISPPLDs 401, 402 and 403, by pulsing the SCLKsignal
15 times. Next, at step 1506, the devices of serially con
nected chain 400 are placed into the "execute” state by
Programming command generator 404, executing the signal
protocol illustrated in FIG. 11. The bulk erase function is
then executed at step 1507 by settingispEN, SDI, SCLKand
Mode signals logic low and then pulsing signal SCLK.

FIG. 5b shows portion 1500b of flow diagram 1500,
which covers steps 1508-1515. Step 1508 is a waiting step
to wait for the completion of the bulk erase instruction.
Since ISP PLDS devices 401, 402 and 403 are bulk-erased
simultaneously, waiting step 1508 is completed when bulk
erase is completed in the device requiring the most time. At
step 1509, ISPPLDs 401, 402 and 403 are placed again in
"shift” state, in the manner described above, for receiving
further instructions. At step 1510, the shift address instruc
tions (i.e. the "ADDSHFT" instruction for each of ISPPLDs
402 and 403 and the "FLOWTHRU' instruction for ISP
PLD 401, as discussed above) are then retrieved from data
structure 1003 of ispSTREAM file 1000 and downloaded
into ISP PLDS 40, 402 and 403. FIG. 8b shows the
contents of 5-bits instruction registers 105, 205 and 305 of
ISP PLDs 401-403, respectively, after the shift address
instructions are downloaded. At step 1511, ISP PLDs 401,
402 and 403 are placed in the "execute” state in the manner
described above. The addresses bits (204) are then retrieved,
at step 1512, from data structure 1004 of ispSTREAM file
1000 and shifted into ISPPLDs 402 and 403, by pulsing the
SCLK signal 204 times. FIG. 12 is a schematic diagram
showing shifting address bits into shift address registers 202
and 302.

At steps 1514-1516 (FIG. 15c), the shift data instruction
and programming data bits are retrieved from data structures
1005 and 1006, and shifted into data registers 103,203a and
303a of ISP PLDs 401, 402 and 403. Steps 1514-1516
perform, respectively, the functions of (i) placing ISPPLDs
401–403 in "shift” state, (ii) shifting in the data shift
instructions of data structure 1005, (iii) placing ISP PLDs
401–403 in "execute” state, (iv) shifting the program data
bits of data structure 1006 into data registers 103, 203a and
203b. FIG. 13 shows the contents of data registers 103,203a
and 303a, after the step 1516. ISPPLDs 401-403 are then
placed in “shift' mode again to receive the program instruc
tions. If the data shifted into data registers 103, 203a and
303a are all '1's, programming can be skipped. Thus, at step
1518, if the data in data registers 103.203a and 303a are all
'1's, the next step is step 1524 (FIG. 15c); otherwise, step
1519 retrieves from data structure 1007 of ispSTREAM file
1000 the program instructions for ISP PLDS 401-403. At
step 1520, ISP PLDs 401-403 are then placed into the
"execute” state, in the manner explained above. Program
ming is initiated at step 1521 by setting ispEN, MODE, SDI
and SCLK signal to logic low and then pulsing the SCLK
signal. State 1522 is a timing state, in which command
generator 404 waits a predetermined required time period to

O

5

20

25

30

35

45

50

55

12
ensure successful programming. Thus, simultaneous pro
gramming is achieved. ISPPLDS 401-403 are then returned
to the shift state for receiving further instructions. FIG. 18.c
shows the contents of 5-bits instruction registers 105, 205
and 305 of ISPPLDs 401–403, respectively, after the shift
address instructions are downloaded at step 1519. FIG. 18.c
also shows that, when the program bits in data register 203a
is all '1's, but if neither data register 103 nor data register
303a is all '1's, then programming proceeds with ISPPLD
402's instruction register 205 set to a NOP (no operation)
instruction. It is found that, with the sorting at step 1404 of
programming data bits into the two groups, for an
ispGAL22V10 type device, and three groups, for an ispLSI
device. Substantial programming time is saved because
programming steps 1519-1523 can then be skipped.

Verify instructions are then retrieved from data structure
1008 of ispSTREAM file 100 and provided to ISP PLDs
401–403 at step 1524. At step 1525, ISPPLDs 401-403 are
placed in the "execute" state. At step 1526, data verify
operations are initiated by the protocol: (i) setting ispEN,
SDI, SCK, and MODE signals to logic low and (ii)
thereafter, the SCLK clock signal is pulsed. State 1527 then
waits for a period sufficient for each ISPPLD device to read
the memory for programmed data bits stored at steps
1519-1523. The data to be verified are then shifted out of
data registers 103, 203a and 203b by (i) placing, at step
1528, ISP PLDs 401–403 into the “shift state; (ii) at step
1529, retrieving from data structure 1014 of ispSTREAM
file 1000 the data shift instructions, and shifting such
instructions into ISP PLDs 401-403; (iii) at step 1530,
placing ISPPLDs 401-403 into the "execute" state, and (iv)
at step 1531, pulsing signal SCLK 378 times to output at
signal SDO, the data bits of data registers 103, 203a and
303a. If the data shifted out of ISP PLDS 401-403 are
identical to the data in data structure 1006 of ispSTREAM
file 1000, ISPPLDs 401–403 are properly programmed.
At step 1532 (FIG. 15e), ISPPLDs 401-403 are placed in

the "shift" state to continue programming of ISP PLDs
401–403. Steps 1514-1532 are repeated to program the next
row in ISP PLD 401, and the next half-row in each of ISP
PLDs 402-403. Thereafter, at decision point 1534, isp
STREAM file 1000 is checked to determined all data in
ispSTREAM file 1000 have been downloaded into the
devices in serially connected chain 400. If there remains
more data to download into ISPPLDs 401–403, procedure
1500 returns to step 1514; otherwise, procedure 1500 is
completed.

The above detailed description is provided to illustrate
specific embodiments of the present invention and is not
intended to be limiting. Numerous variations and modifica
tions within the scope of the present invention are possible.
For example, as mentioned above, the present invention is
applicable to all types of field programmable devices,
including programmable logic devices, programmable
memories, and programmable analog circuits. The present
invention is set forth in the claims appended below.

5,635,855
13 14

f : k + k k . k h : kikkk k k k k k k k k k is k k

DL ZOOM.C

This program contains the core functions needed to perform the
daisy chain parallel programming.

Rew By Date Description

5.30 Howard Tang 1/09/94 :
-

include <stdio.h>
include < conio.h>

include <reath.h>
include Kdos.h>
include <alloch)
#include <process.h>
include Kstdlib.h>
*include <bios.h>
include <direct.h>
it include Ktime.h>
#include gstring.h>
include <ctype.h>

include "dl com.h"
#include "dl down.h"
include "dl dev.pro"

extern unsigned char * infile;
extern Chair *pfuse;
extern int inputport

Outputport
port

extern int array changed,
file Sfuse,
chip sfuse;

exter int. file valid,
file id,
file ok;

extern char daisychain chip (max chips in daisychain);
extern char write ues row;
fkadded by hit to preserve the QP field when writing JEDEC file" /
extern int. CP

unsigned int. * data length;
unsigned char * * buffer;

typedef struct zoo.ucfg {
char name Imax name len;
char op 5)
int opvalue;
char Bedfille (pathma.x);
unsigned char id;
int width ;
int. length;
int les f * true if program ues */
iIt security; /* true if security bit set */

ZOOMCFG;

2OOMCEG zoomconfg (tax chips in daisy chain);

5,635,855
15 16

A * define 5-bit cortunand codes, using 8-bit value, with the 3 MSEs zeroed *f
idefine NOP 0x00 A * 00000 - No operation */

#define SHIFT ADDRESS OxO1 A * OOOO - Enable address
* shift register */

it define SHIFT DATA Ox02 A * OOO10 - Enable data shift
* register k/

idefine ARCH SHIFT 0x14 A * 10100 - Enable arch shift
* for 22w O * /

define ERASE 0x03 A OOOil - Erase entire
* device, except UES */

idefine ERASE ALL Ox10 f* OOOO - Erase entire
* device, and UES k/

idefine PROGRAM HIGH OxO /* OOl13 - Program high order
* its * /

it define PROGRAM LOW 0x08 f* 01000 - Program low order
* bits * f.

#define PROGRAM UES OxOF /* Ollili - Program UES row */

define SECURE OxOS /* Old Oil - Program security
cell 'k. A

#define VERIFY HIGH PROG 0x0A /* 0100 - Verify high order
* bits are programmed (JEDEC
* zeros) r/

it define VERIFY LOW PROG OxOB A * 0.1011 - Verify low order
* bits are programmed (JEDEC
* zeros) r/

#define VERIFY HIGH ERASED Ox12 /* 10010 - Verify high order
bits are erased (JEDEC

* ones) * f.
#define VERIFY LOW ERASED Ox13 f* OO11 - Verify low order

* its are erased (JEDEC
* ones) * /

#define VERIFY UES 0x1. f* OOOl - Verify f Load UES
* bits st

it define FLOW THRU OxOE f* O110 - Put the device in
* bypass mode */

f*Prototype of routines */
void dl init 20orn();
int dl check op (int devices in chain, int * operation);
int dl read did file (char * infilename, int *longest row,

int devices in chain,
int *HD devices, int operation);

void g22v1.0 bitmap (unsigned char * infille) ;
int pack jedec files (char * infilename,

int * last row, int *erase pulse, int program pulse,
int "devices in chain, unsigned int *maxi data) ;

int ispstreal purp (int last row, lint erase pulse,
int program pulse,
int * devices in chain, unsigned int. Inaxi data);

extern int read jedec file (FILE * fpr, unsigned char * infille, unsigned
long *nfuse) ;

extern int. nuIn daisy chain chips;
extern int Curr chip;

A k . . * . * * * * * * x
k

5,635,855
17 18

r DL INIT ZOOM s

* + +

wroid dl init zoom ()

int i;
for (i = 0; i < max chips in daisychain; i++) {

zoomconfig (i), name 0) = 'WO' ;
zoomconfig (i). op (O) = \0 ;
zooriconfg i. opvalue = -1;
zoomconfg i. edifile (O) = WO' ;
zoomconfgi.i.d = 0;
ZoCruconfg (il . width = 0;
zoomconfg (i.length = 0;
Zoomconfg il. ues = 0; f* for HD devices only */
zoomconfg i. security = 0;

f : k k + k k k k + k it k + x * r * r * r * if e i + k k x t e i e s : y :

DL CHECK OPERATION

Zoom supports all verify or all program verify. Mix
operation is is supported.

k k k k k l k at k - r re. A ske k is .

int di check op (int devices in chain, int operation)

int ii

*Operation = OP NOP;
for (i = 0; i <= devices in chain; i++) {

iifcief EWAL
printf("devices =%d i=%d, operation=%s, opvalues%d \n",

devices in chain i, ZooInconfg i. op,
ZOOInconfg i. opvalue);

endiif
if (! stricmpi (2 oomconfig (i). op 'PV", 2)) {

if (zoomconfig (i.jedfille (0) = VO) f* force to mop if no JEDEC
* file */

zoomconfg i. opvalue = OP PROGRAM VERIFY;
else

zoomconfg (i). opvalue = OP NOP;
} else if (strincImpi (zoomconfgi).op, "V" l))

zoomconfg (i). opvalue = OP VERIFY;
else if (strincmpi (zoomconfgi).op, "C", 1))

zoomconfig i. opvalue = -1;
else if (strincmpi (zoomconfg(i.op, "RS", 2))

zoonconfig (i) - opvalue = -1;
else if (! StirncImpi (zoomconfgi.op, "E", 1))

Zoomconfig i. opvalue = -1;
else if (! Strincimpi (zoonconfgi).op, "NOP", 3))

zoomconfg (i). opvalue = OP NOP;
else

ZOOINCOInfgi). opvalue = -1 :
if (Zoomconfg i. opvalue =ac -1) {

ifdef EVA
printf("is-id, operation=%s, opvalue=%dyn", i. zoomconfg i. op,

zoolconfgi. Opvalue);
endilf

return UNKNOWN FUNCTION;

5,635,855
19 20

) else if (zoomconfg (ii. opvalue = OP NOP) {

}

if (* operation =s OP NOP)
* operation = zoomconfg i. opvalue;

else if (operation = zoonconfig (i) . opvalue) { /* Inix operation
* supported * /

if (("operation -- OP PROGRAM VERIFY)
(zoomconfg (i.opvalue == OP PROGRAM VERIFY))

* operation = OP PROGRAM VERIFY; /*keep the dominant
- operation */

if (* operation == OP NOP) { A* the file has NOP and
* illegal operations * ?

it ifdef EVAL
printf("i=d, operation=%s, opvalue=%d\n", i, zoomconfg i. op,

it end if
2OOmConfgi) . Cpvalue);

return FILE NOT VALID; A * reject the file */

return

A * r * r * is a
k

k

int

int

chair

char
FILE

valid

OK;

*k k - yk k .

k

DL READ pLDFILE

* * * * * * * * * * r * * * * * * * * * * * r * r * r */

dl read didfile (char * infilename, int * longest row,
int *devices in chair,
int *HD devices, int. * operation)

ir
j,
rcode
Vaid;
stir (chip type len),
strl chip type len),
str2 chip type len);
tist strmax;

= false;
* FiD devices = false;

*longest row = 0;
di initzoom ();
* devices in chain = 0;

if ((fpr = fopen (infillename, "r")) == NULL)
return FILE NOT FOUND;

while (fgets (tstr, strinax, fpr) = NULL) {
valid = false;
if (SSCanf (tstr, "%s% sås", zoomconfg (i). name, zoomconfig (i).op,

zoonconfig (i). jedfille) > 0) {
infoef EWAL

end if

printf(". DLD file read is 3d is is is \n", i, zoomconfg (i) name,
ZOOInconfig Ei-op,
ZoCInconfog i} . jedfille) ;

Spril It f (Str, "isp. Sixs", zoomconfig (i) . name);
Sprint f (Stirl, "ispGAL3S", zooInconfogi . name);
Sprint f (str2, "isps", zoonconfig Ei) name);

5,635,855
21 22

F. word1 = number of bits in the strean k
* Byte 0 ... x0 - id bit stream k
* word2 = number of bits in the stream e
.* Byte 0 . . xi = command stream i.e load address r
* World3 = number of bits in the streair
* Byte 0 . . x2 = command streann i.e load data y
* word4 = number of bits in the streal k
* Byte 0 . . x3 = command stream i.e program k
* WordN = last word = file checksum k
* */

int pack jedec files (char * in filename,
int *last row, int. "erase pulse, int program pulse,

int * devices in chain, unsigned int *maxi data)
int rcode,

FILE *fpr;
FE *fpw;
unsigned long total fuse = 0;
unsigned long total memory;
unsigned long Ifuse,

in pos,
data in pos,
out pos,
tIp;

unsigned char uch,
ch,
Curch,
mask

unsigned iong curr pos;
int HD,

Condition;
int HD devices = 0;
int GAL devices = 0;
int GDS devices = 0;
int in Col.

data in Col,
out. Col,
address bits,
address;

int operation,
- reaxi row,

width,
lues row,
secrow,
OW

int les
data;

unsigned int Ill
I A * index of the Inertory

blocks */
int instruction bit length = 5; f* for alli isp devices */
int isp hw id = 8; f* hardwire id bit length */
unsigned char addressing chip. Inax address / 8 + 1);
int do data,

do Command,
do address,
doues,
do security,
do Program,
do verify;

5,635,855
23 24

unsigned char instruction;
register int l;
int row map (2 chip max address + 1);

data length = NULL;
buffer = NULL;
Curr pos = NULL;
"erase pulse = 0;
* program pulse = 0;
do program = do verify = false;
total fuse = 0;
"last row = 0;
valid = 0;
do security = false; /* default to no security

* programming */
rCode - OK;
rcode = dilread dildfile (infilename, &ITlaxi row, devices in chain,

- &HD, & operation);
if (rcode Is OK)

return rcode;
if (operation == OP PROGRAM VERIFY)

do progrart = true; /* program & verify */
/* can also mix with verify only */
else if (operation == OPVERIFY)

do verify = true; /* strictly verify only */

if ((currpos = (unsigned long ") calloc (18 * (maxi row + 3),
sizedf (unsigned long))) == NULL) {

free (curr pos);
return FILE TOO BIG;

if ((data length = (unsigned int *) calloc (18 * (maxi row + 3),
sizeof (unsigned int))) == NULL) {

free (curr pos);
free (data length);
return FILE TOO BIG;

}

/*
* build the data length per row matrix and assumining that the job on hand
* is always programming and verification
*/

ues row = ues = 0;
if (HD)

data = instruction bit length; W* for chains contain HD
* devices */

else
data = 0; /* for GAL only chain */

for (i = "devices in chain; i >= 0; i-) {
/*
* look for the worst case bulk erase pulse width and progral Luning pulse
* width
s/

if ((operation == OP PROGRAM VERIFY) & &
(zoomconfg i. opvalue == OP PROGRAM. VERIFY)) {

if (device info (daisychain chip ij) . bulk erase delay > *erase pulse)
erase pulse = device info (daisy chain chip (i)). bulk erase delay;

if (device info (daisy chain chipi} }...program delay > program pulse)
"program pulse = device info (daisy chain chip (i)). program delay;

row = 0;
GDS devices = GAL devices = HD devices = false;
if ((zoomconfg (i.i.d == id GDS14) || (zoonconfg (i) .id == id GDS18) It

(zoonconfgti). id == id GDS22))

5,635,855
25 26

if ("devices in chain > max chips in daisy chain) {
follose (fpr);
return FILE TOO BIG;

}
for (j = 0; j < Itax devices; j++) {

if ((: stricmp (str, device info (j) - name))
(stricmp (strl, device info (j. name))
(stricmp (str2, device info (j).name))) {

daisychain chip (i = j; /* store the chip identifier" /
zoomconfg (i) .id = device info Ejl. id;
if ((zoomconfg ill.id == id GDS14)

(zoomconfgi) .id == id GDS18)
(zoomconfig (i) - id. == id GDS22)) {

zoomconfg (i). width = 24; /* Orily for GDS */
zoomconfg (i).length = device info (j).max address

+ device info (j) arch rows;
} else if (zoomconfgi) .id == id GAL22v10) {

zoomconfgi) . width = 38; /* Only for GAL22V10 * /
f* add 1 to account for arch row and 1 for the security row */
zoomconfg (i). length = device info (j). Inax address + 1 + l;

else { /* Only for HD */
zoomconfg (i). width = device info (j) - data width;
f* ues row included */
zoomconfgi} .length = 2 * device info j. max address;
*HD devices = true;

valid = true;
break;

if (valid)
* devices in chain = i++;

else if (zoonconfg (i) . name (0) == 'WO' } {
}
A * skip empty lines */

else
return UNKNOWN CHIP;

rcode = dil check op (* devices in chain, operation);
if (rcode - OK) {

for (i = 0; i <= * devices in chain; it---) {
if (zoomconfg (i). opvalue == OP NOP) {

zoomconfgi) . width = 0;
zoomconfgi).length = 0;

if (zoomconfg (il-length > *longest row)
* longest row = zoomconfg (i).length;

follose (fpr);
return rocode;

A * * * * * * * * + k + k + k + 4 + 4 + * * * * * * * * * * r *
s k

22wl.0 bitmap r
r r

s: k bit - internal bit location

5,635,855
27 28

* This procedure maps a packed internal data bit location
* to a corresponding Jedec fuse location.
k

r s - r * * * * * * * * * * * * * * * * * * * * * * k + 4 + r + k

void g22v 10 bitmap (unsigned char * infile)
{

unsigned long bit,
jed;

int in Col,
out col;

unsigned iong in pos,
outpos;

unsigned char buff (Jedec bits GAI.22 v1.0 + ues bits GAL22v10) / 8 + 1);

for (jed = 0; jed K jedec bits GAL22v 10 + ues bits GAL22v10; jed++) {
bit = jed;
if (jed < ((unsigned long) Itax address GAL22vio

* (unsigned long) data width GAL22v10)) { /* and array */
((Jed 3 (unsigned long) max address GAL22vlO) *
(unsigned long) data width GAL22vlO) +

(ied (unsigned long) Itax address GAI.22 v10);
} else if (Jed < ((unsigned long) Inax address GAL22vlo

* (unsigned long) data width GAL22 v10
+ (unsigned long) glib width GAL22v10)) { /* architecture */

/* unscramble architecture row */
if (jed ?. 2) {

bit = jed - l;
} else

bit is jed + l;

bit

in pos = jed ? 8;
in col (int) (7 - jed : 8) ;
cut pos = bit / 8;
out coll = (int) (7 - bit 4, 8) ;

if ((infile (in pos) >> in col) & 1)
buf (out pos) = 1 << out col;

else
buf out posj & = ~ (1 << out col) ;

}
/* write back to infille * f.
for (bit = 0; bit <= (jedec bits. GAL22v 10 + ues bits GAL22v10) / 8; bitt h)

in file bit) = buf bit

A * r * * r * r * * * * * + k x w w x + x * * * * *
r

r PACK JEDEC FILES k
k

* infillename - DLD file name k
* infille - packed array to store jedec data k

display - display data on screer. k
k r

r

* This procedure reads in the . DLD file and the JEDEC files *
to create the zoom file

The format of the zoolin file : A.
* Byte 0 . Of for isp, f O for jtag

Byte l = devices in the chain

5,635,855
31 32

if (== maxi row)
ues row = row; /* the ues row is found */

row ++;
else
data length row----) + r zoonconfig (i) . width;

} else
row---- /* array = 0 */

if (do program)
data length row----) += instruction bit length; /* Program */

else
row + +; /* skip if verify only */

data length row--+ += instruction bit length; /* Verify Lvt */
data length row++) += instruction bit length; /* data shift out * /

}
data length row-h-F) += instruction pit length; /* secure */
if (row - 1 > *last row)

* last row = row - 1;

if ((HD) &&. (do program)) {
data length (ues row) += ues; A the chain contain HD

* devices and assume all */
data length (ues row - 4) = 0; A * no verify erase instruction

* needed */
data length. Eules row - 3) = 0; A* no data shift tw
data length (ues row - 2) = 0; A * no erased bit counts */

} else if ((HD) &&. (do verify) &&. (ues row)) { /* ues row exist ? */
data length (ues row} = 0; reserve no room for ues

* bits */
data length (ues row - 4) = 0; A * no verify erase instruction

* needed */
data length (ues row - 3) = 0; A* no data shift *f
data length (ues row - 2 = 0; A * no erased bit counts */
data length ?ues row - 1} = 0; * Ilo data shift
data length (ues row + 1} = 0; /* no action on program */
data length (ues row + 2) = 0; /* no action on verify */
data length (ues row + 3) = 0; /* no action on data shift */

*maxi data - data length (0);
for (i = 0; i <= 'last row; i-+) {

Curr pos?i + 1) = Curr pos (i) + (unsigned long) data length (i);
total fuse + (unsigned long) data length (i);
if (maxl data < data length (i)

*Inaxi data = data length Eii;

total memory = total fuse / 8 + 2;
m = total memory / 0xFFF0;

if ((buffer - (unsigned char **) calloc (n + 2,
Sizeof (unsigned char *))) == NULL) {

free (curr pos);
free (data length);
free (buffer) ;
return FILE TOO BIG;

e

for (i = 0; i < m + 2; i++)
buffer i = NULL; ?' initialize the array */

i = 0,
do

if ((buifer (i++} = (unsigned char *) calloc (OxFFFO,
sizeof (unsigned char))) == NULL)
free (curr pos);
free (data length);
for (j = 0; j k i; j++)

5,635,855
33 34

if (buffer (j) = NULL)
free (buffer(j);

A free (*buffer); "f
free (buffer) ;
return FILE TOO BIG;

}
} while (i <= m) ;

A x
* build the combined pack file first so that all the variables in the
* zoomconfg struct are filled
* /

for (i = *devices in chain; i >= 0; i-) {
for (j = 0; j <= 2 * chip max address + l; j++)

row inap (j = 3; /* initialize the row map */
if ((zoomconfg (i). opvalue s- OP NOP) (zoomconfg (i.jedfille == \0'))

zoomconfg Eil-opvalue = OP NOP; f* no need to read the edec
* file *f

else
rcode = FILE NOT VALID;
if ((fpr = fopen (zoomconfg i. edifile, "r")) == NULL)

return FILE NOT FOUND;
ch = fgetc (fpr) ;
while ((isiedec (ch)) & & (ch i = jedec stx))

ch = fgetic (fpr) ;
if (ch. == jedec stx) { A * standard jedec file

format *f
rcode = read jedec file (fpr, infille &nfuse);

if (rcode = OK)
return rocode

/* check if the fuse count matches with the device selected */
if ((nfuse = f * HD, GDS devices 22 */

(unsigned long) (device info (daisychain chip (i)). jedec bits))
& & (nfuse l = (device info (daisy chain chip fill. jedec bits +

device info (daisy chain chip (i)).ues bits))) {
return FILE ERROR;

GDS devices - GAL devices e HD devices = false;
if ((zoomconfg (i) .id == id GDS14) (zoomconfg ill.id == id GDS18) ||

(zoomconfg i.id = id GDS22))
GDS devices = true;

else if (zoomconfgi) .id == id GAL22v10)
GAL devices = true;

else
HD devices = true;

if (write ues row)
zoom Confgi.ues F true;

if ((HD devices) & & (write ues row) &&
(zoomconfg i. opvalue == OP PROGRAM VERIFY))

data length fues rowl -= zoomconfgti). width; /* adjust the ues
length */

if (file sfuse) {
zoomconfgi) . security = true;
if (HD devices)

do security = true; /* HD Security fuse
* programming required */

}
if (GAL devices)

g22v1.0 bitmap (infille) ;

A* group all the all rows together to minimize programming time */
if ((RD devices) &&.

(zoomconfg (il opvalue == OP PROGRAM VERIFY)) { /* programming time
* (inimization for

5,635,855
35

valid = true; A
data = true; /k
in coli = 0; /*

data in pos = 0;
data in Col = 8;
Curch - infile (data in pos);
for (j = 0; j < zoomconfg (i) - length;)++)

leave ues row alone A
for k = 0; k < zoomconfo (i) . wildth;

-data in Col;
if (data in col < 0) {

data in Col = 7;
data in pos++;
curch =infile (data in pos);

}
if (! ((curch >> data in col) & l))

if (3 & 2) /*
data = false /*

else
valid - false; /*

if (J & 2) { /*
if ((data) & & (valid)) { /*

for (m = j - 2 * n - 1;
It < zoomconfg (i) . length -

row map (m) row map (m + 2};

f* map the current 2 rows to the
row map (zoomconfg (i).length - 2)
row map (zoonconfig Eij. length - 1)

36

* HD devices * A
all i even row? */
a odd row 2 */
keep track of the num of
all is even & odd rows "A
keep track of the number of
relocation * /

f * see a 02 */
odd rows? */
odd row not all 1s */

even row not all 1s */

odd rows? */
both odd & even are 1s */

2; m---) {
/* move the row up

by 2 */

vacated rows */
= - 1;
= ;

in col++; /* IIlark the insertion done */
n+F; /* keep the relocation

count */
else if ((data) (valid)) {
A* leave the odd and even rows all 1s at the botton A
for (It j - 2 r n - 1;

m < zoonconfig (i). length - 2 * in col - 2; int-t-)
row map (m) row map m + 2};

if (data) { /* only the odd row is all
1s A

row map (zoomconfig (i).length - 2 * in col - 2 = j - 1;
row map (zoomconfg (i) - length - 2 * in col - 1) = j;
n++; /* increase the relocation

* count */
else if valid) { f* only the even row is all

* 1s make the all row
* last */

row Tap (zoomconfig (i). length - 2 * in col - 2 = 3;
row rap (zoomconfg (i). length - 2 * in col - 1) = j - 1;

tr

increase the relocation
count */

}
Y

valid = data /* reset then for the next
* cod/even pair of rows */

true;

5,635,855
37 38

iifcief EVAL
for (k = 0; k <= maxi row; k++)

printf("k = %d row map (k) = &d\n", k, row map (k));
end if

data in pos = 0;
data in coll = 8;
Curch = 0;
uch = 0;
j = 0; A device row f
do ues = false; f* do ues when reach the last

k row k/
row is 0;
for (l = 0; 1 <= *last row; l++) {

do address = false;
do data = false;
do command = false;
address bits = 0;
if (KHD devices) & & (j == maxi row) & & (zoolconfg i. ues)

& & (zoomconfgi). opvalue = OP PROGRAM VERIFY)) {
do lies = true; f* reach the last row, go do

* les */
/* different in length in ues for 3256 and 8192 */
data = zoomconfig (i) . width

- device info (daisychain chip (i)} - ues bits;
if (il sease O) f* id chains */

width = isp hw id;
addressing (O) = 0x00; /* borrow it to carry id */
for (k = 0; k < isp hw id; kitt) f* rotate the id. A

if ((zoomconfig (i), id -> k) & 0x01)
addressing 0) = 0x01 << 7 - k;

do address = true;
else if (il sets 1) f* Bulk erase instruction *A
if ((BD devices) &&. (zoomconfig (i) ues))

instruction = ERASE ALL;
else

instruction = ERASE;
width = instruction bit length;
if (zoonaconfgfi). opvalue = OP PROGRAM VERIFY)

instruction of NOP;
do command = true;
if (do verify)

width = 0; /* verify only so do
nothing */

else
if (l == * last row)

condition as 8 /* security fuse row */
else

condition = (- 2) 18;
switch (condition) {

case O
if ((HD devices) &&

(zoomconfg (i) opvalue == OP PROGRAM. VERIFY) & &
(< zoonconfgi) . length)) {

/* search for the proper place to store the bits */
for (k se 0; k <= zoomconfg i} . length; k++)

if (j == row map (k)
break;

if k & 2)
row = (k - 1) * 9 + 2 f* odd and even swap? */

else
row s k * 9 + 2;

else
row = l;

width = instruction pit length;

5,635,855
41 42

* odd row Hvit for HD devices
k/

width = instruction bit length;
if (data length row) == 0) {

width = 0;
break;

/* do nothing */
else if ((HD devices) &&

(zoomconfg (i). opvalue == OP PROGRAM VERIFY)
instruction = SHIFT DATA;

else
instruction = FLOW THRU;

if ((HD devices) & & (j >= zoomconfg (i).length))
instruction = FLOW THRU; f* defer ues row */

do command = true;
break;

case A: f* calculate the number of 1s
* to be shifted out f

case 12: /* to verify that the HD
* devices is erased */

width = 0; /* do not store the stream of
* 1s to save memory */

if (data length row - 1 = 0)
break; f* do nothing */

else if (instruction == SHIFT DATA) f* need to shift bits
* out * A

data length row) += zoomconfig (i). width;
break;

case 5: A * shift in data for
* programming */

case 9: A shift out data to verify
* a devices */

case 3: A * shift in data for
* programining */

case 1 : A * shift out data to verify
* all devices */

width = instruction bit length;
if (zoomconfg (i) - opvalue is OP NOP) {

if ((GAL devices) & & (j >= max address GAL22 v10)) {
if (j == max address GAL22v10)

instruction = ARCH SHIFT;
else if ((j == zoomconfg (il-length - 1) /* ues row and

* security
* row */

(j == zoomconfgi. length)) {
if (zoomconfg i. opvalue == OP VERIFY)

instruction is FLOW THRU;
else

instruction
else
instruction = FLOW THRU;

} else if ((HD devices) & & (j >= zoomconfig (i.length))
instruction = FLOW THRU; /* defer ues row */

else if ((HD devices) & & (j > zoomconfgi).length))
instruction = FLOW THRU;

se SHIFT DATA;

else
instruction = SHIFT DATA;

else
instruction = FLOW THRU; A k for NOP */

do Command = true;
if (do ues)

instruction = SHIFT DATA; /* for HD devices only */
if ((condition == 9) (condition = s. 17))

j++; A * point to next devices

5,635,855
43 44

row “A
break;

Case 6: /* pack data for even row of
* HD devices */

Case 4: W* data for odd row of HD
* devices */

do data = true;
if ((zoomconfg (i). opvalue = OP NOP) & &

(j <= zoomconfig (i). length)) {
if ((GAI devices) & & (j >= max address GAL22v10)) {

if (j == max address GAL22v10)
width = glib width GAL22v10;

else if ((i == zoonconfg (i). length - 1)
(j == zoo inconfig (i). length)) {

if (zoomconfg(i.opvalue == OF VERIFY)
width = 0;

else
width = zoonconfgi) . width;

}
} else

width = zoo.config (i). width;
else
width = 0;

if ((HD devices) & & (j >= zoomconfa (i).length))
A * defer ues later
width = 0;

if (doues)
width = zoomconfgi) . wildth; /* lues length */

break;
case 7: /* program command */
case 15:

width = instruction bit length;
if ((zoomconfig (i) opvalue == OP PROGRAM VERIFY) & &

(j <r zoomconfid (i. ength)) {

if (HD devices) &&. (condition == 15))
instruction = PROGRAM LOW; /* program odd row of HD

* devices */
else if ((GAL devices) & & (j == zoomconfg (i). length)

& & (: zoomconfig i security))
/* program security 2 */

instruction = NOP; f* don't program security */
else

instruction = PROGRAM HIGH; /* program all */
else
instruction = NOP

if ((HD devices) & S (j > = zoomconfg (i). length))
instruction = NOP; A * defer ues row */

if (doues) {
if (zoomconfig (i). opvalue == OP PROGRAM. VERIFY)

instruction = PROGRAM UES; /* for HD devices only */
else

instruction = NOP

do command = true;
break;

case 8: A * verify command for all
* devices in the chain */

case 6:

width = instruction bit length;
if ((zoonconfig (). Cp value = OP NOP) & &

(j <= zoonconfig Ei).length)) {
if ((condition = F 16) &&. (ED devices))

instruction = VERIFY LOW PROG;
else if ((GAL devices) & & () == zoomconfgti). length))

instruction er NOP; A * security row of GAL22wl O */

5,635,855
45 46

else
instruction - VERIFY HIGH PROG; /* verify all */

} else - ---

instruction = NOP;
if ((HD devices) & & (j >= zoomconfg (i).length))

instruction is NOP; f* defer lues row */
if (do ues)

instruction = VERIFY UES; /* for HD devices only */
do command = true;
break;

case 18: A* take care of programming
* security fuses for HD
* devices */

if ((HD devices) & &
(zoomconfg (ii. opvalue == OP PROGRAM VERIFY) & &
(zoom config (i) . security))

instruction = SECURE;
else

instruction = NOP;
width = instruction bit length;
do command = true;
if (do verify)

width = 0 f* verify only so do
nothing */

break;
case 19:
default:

width = 0; /* take care of do nothing
row “A

break;
}

}
/* calculate the array bit lengths */
m = (curr pos (row) / 8) / OxFFFO;
n = (curr pos (row / 8) * 0xFFF0;
out col = 7 - (int) (curr pos (row % 8) + 1;
lach = buffer m n :
if (do command) {

f x
* rotate the instruction so that least significant bit shift in
* first
k/

Curch = 0;
for k = 0; k < 8; k++)

if ((instruction >> k) & 0x01)
curch i = 0x01 << 7 - k;

in coll = 8.
in pos = 0;

} else if (do address) {
in pos 0.
in coll = 8;
curch = addressing in pos);

} else if (do data)
Curch - infile (data in pos);

if (data length row) == 0)
width = 0;

else
for (k = 0; k K width; k----) {

if (do data)
data in col--;

else
in col-;

out col--;
if ((do data) && (data in col < 0)) {

data in coll = 7;

5,635,855
53 54

out coll = 0;
else {
for (j = 0; j < data length (address); j++) {

-data in Col;
if (data in col < 0) {

data in coll = 7;
n++; -

if (n >= 0xFFF0) {
In++;
n = 0;

}
curch - buffer (m) n);

if ((Curch >> data in col) & 01)
fputc ('' ' , fpw) ;

else
fputc (0’, fpw) ;

}

address++
fprintif (fpw, "Win 03d ", address);

}
fclose (fpw) ;

endilf
free (curr pos);
return roode;

/* + k + k + k + k + k + k + k + k . . . * * * * * * * * * * * * * r *
k s

k ISPSTREAM PUMP rk
k k

* * * * * * x k w k + k + + k + k + k + k k + k k + k . . . x x * * * * * * * * * * * * * * * * * + k + x * /

int ispstream pump (
int last row, int erase pulse, int program pulse,

int *devices in chain, unsigned int maxi data)
unsigned int l

I
error
length,
index;

int rCode,
i.

k,
out pos,
outcol,
in Col;

unsigned char * data,
curch,
sdo,
cur bit;

char do shift instruction,
Condition,
shift state
allzero;

char do program,
do erase,
do shift in data,
do shift out data;

unsigned int bit 1 count;
register int row;
register unsigned char port bit;

5,635,855
55

port bit = NUL;
II n = 0;
rcode - OK;
shift state = true;
allizero is true;

56

if ((data = (unsigned char *) (malloc (maxi data / 8 + l))) == NULL) {
free (data);
return ABORT;

}
/* establish parallel port communication * /
/* begin of codes which can be excluded froii ispCOE/ispTEST */

find port () ;
rcode = get daisychain elements (false);
if (rcc.de = OK) {

return (rcode) ;
}

/* check for isp parts */
if ((* devices in chain = nurt daisychain chips - 1)

! I (*devices in chain > Itax chips in daisy chain))
return TOO MANY CHIPS;

for (i = 0; i < num daisychain chips; iih)
Curr chip = i + l;
if (! is part isp ())

return NON ISP PART;
}

/*end of exception code */

move to id state ();

error at 0;
Curch as buffer Inn);
in Col. = 8;
for (row = 0; row <= last row, row- +) {

lifdef EVA, -

printf("\n");
it endlif

do program = false;
do erase = false;
do shift instruction = false;
do shift in data = false;
do shift out data = false;
if (row == 0) {

length = data length row);
do shift out data = true;
out pos = 0;
out coll = 8;

* Ilove to idle state */

A* id chains f

data (out pos) = 0x00;
for (index = 0; index < data iength row); index++) {

--out col;
--in col;
if (out col < 0) {

out col = 7;
outpost +,
data outpos) = 0x00;

}
if (in coli < 0) {

in coll = 7;
n+F;
if (n > = 0xFFFO) {

m++;
n = 0;

5,635,855
57

curch = buffer (m) in
}
if ((Curch XX in col) & 0x01) {

data out pos) = 0x01 << out col;

else if (row == 1) {
move to id state ();

fifdef EVAI

endif
printf("Device in idle state \n");

port bit = NUL;
execute ();

lifdef EVAI,

tendilf
printf("Device in shift state \n");

shiftstate = true;
if (data length row > 0) {

dc shift instruction = true;
if (erase pulse > 0)

do erase = true;
else
if (data length row) as 0)

condition = 9;
else if (row == last row)

condition = 1.8;
else

condition = (row - 2) ; 18;
switch (condition) {

Case ();

do shift instruction
break;

case :
do shift in data = true;
all zero = false;
break;

case 2:

true;

case 10:

do shift instruction - true;
break;

case 3:

case 1:

do shift instruction = true;
f" start the verify timing */
sclk with verify delay () ;
port bit = NUL;
execute();

iifcief EWAL

it endilf

58

/* Bulk erase instruction f

A * (nove the chain into shift
* state */

/* applicable only if
* programming */

A * encounter do nothing row * /

/* security fuse row */

f* shift in address
instruction */

/* address bits */

/* verify erased even rows of
* ED devices */

/* verify erased odd rows of
* HID devices */

/* shift out the erase bits of
* even rows */

/* shift out the erase bits of
* odd rows */

f* to simulte verify delay */

/* stop the verify timing */

printf("Device in shift state condition d\n" condition) ;

shiftstate r true;
break;

case 4:

case 12:

if (program pulse > 0)

/* shift out data to verify HD
* devices A

/* shift out data to verify HD
* devices */

for (i = 0; i < data liength rowl; it t) {

5,635,855
59

A* read the first bit A

60

Sdo = (in SDO & inp (inputport));
if (sdo i = in SDO) {

error---- A
Fifdef EVAL

printf("error happen at row
it end if

}
sclock () ;

port bit = NUL;
execute();

#ifdef EVAL
printf("Device in shlift state condition 3d Win",

it endiif
Shift state a true;
beak;

case 5:

case 13;

do shift instruction = true;
break;

case 6:

case 14 :

do shift in data = true;
bit 1 count = 0;
allZero = false;
break;

case :
Case 15 :

do shift instruction = true;
allzero = true;

if (program pulse > 0)
do program = true;

break
case 8:

case 16:
do shift instruction = true;
break;

case 9:

case 7 :
do shift instruction = true;
do shift out data = true;
/* start the verify timing */
S Clk with verify delay () ;
port bit = NUL.;
execute ();

iifcief EVAL
printf("Device in shift state condition d\n"

end if
shift state = true;
break;

case 8 :

do shift instruction is true;
if (program pulse > 0)

do program = true;
break;

f :

f :

f
f

A x

x

look for all 1s * ?

as 'd bit = dyn", row i) ;

clock out the next bit * /

ready for other
operation */

condition) ;

shift in data for
programming */
shift in data for
programming */

pack data for even row of
HD devices *f
data for odd row of HD
devices */

clear the counter for fuse
bit is */

program command A

if the entire command is 0
(NOP) then skip * /

verify command for all
devices in the chain */

shift out data to verify
all devices in the chain

to simulte verify delay */

stop the verify timing */

condition);

take care of programming
security fuses */

5,635,855
61 62

case 19: /* do nothing row */
if ((((row - 2) ; 18) == 5) (((row - 2) & 18) == 13))

length = 0; /* the data string is enlpty */
if (shiftstate) { A* move the chain to shift

* state next operation */
shiftstate = true;
port bit = NUL;
execute();

ifdef EVAL
printf("Device in shift state condition d\n", condition);

fendilf
length = 0;

break;
default: /* take care of do nothing

row * /
break;

}
if ((do shift instruction) (do shift in data)) {

A * check the purpose of the instruction */
if (do shift in data) { /* keep the data for later

* verification a
out pos = 0;
out col = 8;
data (out pos) = 0x00;
length - data length row);

}
for (index = 0; index < data length row); index++) {

--in col;
if (do shift in data) {

--out coli
if (out col < 0) {

out col = 7;
out pos++;
data (out pos) = 0x00;

if (in col < 0) {
in Col = 7;
n++;
if (n >= 0xFFFO) {

m++;
n = 0;

}
curch = buffer (m) n);

if ((curch >> in col) & Ox01) {
all zero of false; /* a 1 exist */
if (port bit & out SDI) {

W* SDI is already a l *f
else

outp (outputport, out SDI) ;
outp (outputport, out SDI + out SCLK);
outp (outputport, out. SDI);
A* outp (outputport, NUL); */
port bit = out SDI; W* clock a 1 into sci. */

iifcief EVAL
printf("1");

endlif
if (do shift in data) {

data (outpos) = 0x01 << out col;
bit 1 count++; w count the bits of lis

* shiftcd in */

5,635,855
63 64

else
iifcief EVAL

printf("0");
Fendlif

if (port bit & out SDI) /* bring SDI to O? */
Outp (outputport, NUL) ;

outp (outputport, NUL + out SCLK) ;
outp (outputport, NUL) ;
port bit = NUL;

f* clock a zero into sidi A

}
if ((row == 1) & & (erase pulse == C)) { /* don't execute the BE

* CCIII and *f
do erase = false;

f* if erase pulse is set to 0 */
else if ((condition = -) (condition == 15)) {

if (program pulse == 0) {
do program = false;

/* ignore the program command * /
A * if program pulse is set to 0 *f

else if ((bit 1 count == length) & & (bit 1 count > 0)) {
do program = false;

/* ignore the program courtland * /
f* if the whole row are is * /

else if (alzero) { A* the whole commands are
NOPs "A

do program = false;

A * skip the command */
else

shift state = false; A * move chain to execute
state A

port bit = NUL;
execute ()

fifdef EVAL
printf("Device in execute state condition &d\n", condition);

endlif

else
port bit = NUL;
execute () ; f* execute the cominand *f

iifcief EVAL
printf("Device in execute state condition d\n", condition);

tendif
if (do shift instruction)

shiftstate = false; /* chain in execute state */
else

shiftstate = true
}

}
if ((do erase) (do program)) { /* program devices */

ifdef EWAL
printf("programming pulse width is d\n", program pulse);

end if
if (do program)

sclk with delay (program pulse);
else if (do erase)

sclk with delay (erase pulse);
port bit = NUL;
if (do erase) { /* 500us delay min. after bulk

5,635,855
65 66

* erase */
outp (outputport, NUL + out MODE);
outp (outputport, NUL + out MODE + out SDI);
wait for (1); /* lims delay from mode to

* clock A
outp (outputport, NUL + out MODE + out SDI + out SCLK);
outp (outputport, NUL + out MODE + out SDI);
outp (outputport, NUL + out MODE) ;
outp (outputport, NUL);

} else if ((data length row > 0) & & (shiftstate)) {
execute();

ifcief EVAL,
printf("Device in shift state condition : d\n", condition);

endif
shift state = true; /* chain back in shift

state */
}
if (do erase) { A * to reset the security cell

k of 22v30 *
outp (outputport, NUL + out MODE); A k MOVE DEVICE TO ID STATE */
outp (outputport, NUL + out MODE + out SCLK) ;
outp (outputport, NUL + out MODE);
outp (outputport, NUL) ;
port bit a NUL;

iifcief EVAL
printf("Device in execute state condition d\n", condition) ;

endilf
execute(); f* back into isp mode */

ifdef EVAL
printf("Device in shift state \n");

it endilf
shiftstate = true; /* chain in shift state */

}
} else if (do shift outdata) { A * shift data out to verify */

out coll = 8;
out pos - 0;
for (i = 0; i < length; i++) {

-out col;
if (out col < 0) {

out col = 7;
out pos++;

if (cur bit = ((data (out pos) >> out col) & 0x01))
cur bit = in SDO; /* map to the SDO bit */

sdo = (in SDO & inp (inputport)); /* read the first bit */
if (sdo = cur bit) {

error---;
}
Sclock (); /* shift out the next bit */

} /* end of for k/
if ((data length row) > 0) & & (shift state)) {

port bit = NUL;
execute () ;

iifcief EVA,
printf("Device in shift state condition d\n", condition);

endilf

shiftstate = true; /* chain in shift state */

} /* end of if */
if (error X 0) {

break;
ifdef EWAL

printf("failed at condition = %d & bit = %d VI.",
condition, i) ;

iteradif

5,635,855
67 68

A * end of for * /

free (data) ;
move to id state ();

if (error Y 0) {
lifoeif EWAL

printf("failed at condition = d & bit = %d & row if & dyn",
Condition, i, row) ;

it endif
return (VALIDATION ERROR);

else {
/* set ISP and RESET high, so customer can see device working */
/* activate the chain only if no port precondition * /
if (NUL == 0)

outp (outputport, NUL + out ISP + out RESET);

return (OK);
}

/ x + x * * * * * * * * * * * * * r * * * * * * * * * * * * * * * * * * * r * r * : x + k + k + k + k + + k + k + x + k
yA

error handler
rcode - error code

* This procedure return the address of the message string
* for the corresponding error code.
y

void error handler (int rcode, char *message)

A *added by hit for error handling */
char * error message () = { { "PASS"), (""), (" "), "PC hardware Problem" },
{ "Chip and JEDEC File Doesn't Match"),
{ "Can't Find the Download Cable", "The VCC on Board Is Not On" }
{ "No Device Found/Open Download Cable/Open Daisy chain" },
{ "Can't Find the File"}, {"The File Is Not Complete" },
{ "Not Enough PC Memory",
{ "Verification Fail" } {"The Device is Secured" - "Non isp Part Found",
{"The File Contain Operation Not Supported in This Mode"),
{"The Chip Count In the Chain and The File Do not Match"),
{ "Unknown Device Found", "Wrong Fille Type"), "The File Has Error" },
{"The File Has Invalid UES Character" } };

stropy (message, error message-rcode));

5,635,855
69

A * * * * * * * k l k + k k + k * r * x + k + k k . . .
w

ISJEEC

* ch - current character to check

* This procedure checks to see if ch is a valid jedec char. *

+ k + r * + k + k * * * * * * * */

int isjedec (chair ch)

if ((isprint (ch)) II (isspace (ch)))
return l;

else
return 0;

A + i + k k + k + + k . . . ex k + k + k . k + k + k + k k + k is

FIND BEG JEDEC FIELD
ch - current character
fpr - pointer to fuse file

This procedure looks for the next valid edec field char

r

k

k

k .

Char find beg jedec field (char *ch, FILE * fpr)
{ w

*ch as fgetc (fpr) ;

while ((isedec (*ch)) && (isspace (*ch)))
* ch = fgetic (fpr) ;

if (() isjedec (*ch)) & & (*ch i = jedec etx))
return FILE NOT JEDEC;

else
return OK

f k + k + k + k k + k + k + k + k + k + k . * * * * * * * * * + k + k + k

FIND END JEDEC FIELD
k m

* ch - current character
* fpr - pointer to fuse file
k

* This procedure locks for the end of edec field char (*) *
r

* * * * * * * * * * * * * + k we . /

chair find end jedec field (char *ch, FILE * fpr)

*ch = fgetc. (fpr) ;

while ((*ch i = ' ' ') & & (is jedec (*ch)))
*ch is fgetic (fpr) ;

70

5,635,855
71 72

if (! is jedec (*ch))
return FILE NOT JEDEC;

else
return OK

A . . . * * * * * * * * * . * * * * * * * * * * * * * * * *
k k

A. GET JEDEC L FIELD k

* f.pr - pointer to fuse file
* infille - packed array to store jedec data
* Infuse - number of unique fuses specified k
r

r r

* This procedure reads in the jedec data specified in an L *
* field. Nfuse is used to count the number of unique fuses *
* that have been specified r

k

+ r + k + k + k x * x x . . . * * * * * * * : * r * * * * * * * * * * * * * * * * * * * * * * * r * /

char get jedec lifield (FILE * fpr, unsigned char * infille, unsigned long "nfuse)

chair ch = Or;
int Col;
unsigned long j;
unsigned long post
unsigned long fusenum;
unsigned char luch;

ch = O';
j = 0;

fiscanif (fpr, "illu", & fusenum);

if ((fusenum. / 8) <= (unsigned long) filenax) {
pos = fusenum. / 8;
coll = 7 - (fusenum 8) + l;

uch s infile (pos); /* grab existing data Since
* fuse may not be on byte
* boundary */

- while ((ch = ' ' ') & & (isjedec (ch))) {
ch = fgetic (fpr);
if ((ch ass= O') (ch =ac 1.)) { /* found a fuse, so pack

* internally */
++j;
--col;
if (pos > filemax}

return FILE TOO BIG;

if (col K 0) {
in file (pos----) = uch;
uch = infile pos); /* grab the default fuse state *f
col = 7;

/* count number of specified fuses */
+-- (*nfuse);

if (ch. == 'l')
uch = (1 << col) ; A * Eill i t /

else

5,635,855
73 74

lch &s r (1 << col) ; A k fill O *f
} else if ((isspace (ch)) & & (ch. = * '))

return FILE NOT JEDEC;

if (pos > fillemax)
return FILE TOO BIG;

if (j > 0) {
array changed = true;
infile (pos = uch;

if (ch. = ' ' ')
return FILE NOT JEDEC;

else
return FILE NOT JEDEC;

return OK;

/*added by hit to support UES*/
A k k + k + k + x . * * * * * : * : * * * * * x x
k

r GET JEDEC U FIELD
r

* fpr - pointer to fuse file
* infille - packed array to store jedec data k
* infuse - number of unique fuses specified
r

: k

* This procedure reads in the jedec data specified in an L *
* field. Nfuse is used to count the number of unique fuses *
* that have been specified s

k

x + k k + k + k + k + k + k + k + k k + k k + k + k + k + k /

chair get jedec u field (FILE * fpr, unsigned char * infille, unsigned long infuse)

chair ch;
int Col,

rcode
ji

unsigned long pos;
unsigned char uch,

Curch

ch = get c (fpr) ;
j = 0;
pos = *nfuse / 8;
coll = i - (*nfuse & 8) + 1,
uch = infile pos);
rcode = OK;
switch (ch) {

case WIl :
Case :

ch it getc (fpr); f* skip olanks */
case 'O'
Case :

while ((ch = ' ' ') &&. (isjedec (ch))) {
if ((ch. == 'O') (ch. == ' ')) { f* found a fuse, so pack

* internally */
-- col;
if (pos > filemax.)

return FILE TOO BIG;
if (col K 0) {

5,635,855
77 78

return FILE NOT JEDEC;
ch a getic (fpr) ;

}
/* Take care of the last byte */
in file (pos) = infile pos) & (0xFF - (0xFF << col)); /* keep the non UES bits */
infile (pos) = uch; /* pack in the UES and non UES

* bits */
break;

default:
roode = find end jedec field (&ch, fpr) ;
break

if (ch is k ')
return FILE NOT JEDEC;

return rcode;

A r * + k + k + k + k + k

READ MEMORY CHECKSUM
infille - packed array to store jedec data
fochecksum - fuse checksum in JEDEC file
nfuse - number of fuses packed

This procedure calculate the checksum of the data packed
in the array.

By Howard Tang
* w w w k + 4 + x k + k + k + x x x k + k + k + /

int read memory checksum (unsigned char * infille, unsigned long fohecksum, unsigned
unsigned long checksun;
unsigned long i.

POS
int rcode,

Col,
k;

unsigned char uch,
temp;

rcode = OK;
checksum = 0x00000000;
pos = n.fuse / 8;
colk – 8 - Infuse ; 8;
for (i = 0; i < pos; ++ i) {

uch = 0;
for (k = 0; k < 8; k----)

if (infile (i) & (1 << k})
uch = 1 << (7 - k);

checksum += (unsigned long) uch;
}
temp = infile (i) & (0xFF << col) ;
uch is 0;
for (k = 0; k K 8; k++)

if (temp & (i << k))
uch = 1. Kg (7 - k);

checksum += (unsigned long) uch;
checksuit - checksum & 0xFFFF;
if (fchecksum = checkslin)

rcode = FILE NOT VALID;

5,635,855
79 80

return rocode;

A * * * * * * * * * * x x . . . * * * * A A *
w k

READ JEDEC FILE r
y r

* fpr - pointer to fuse file r
* infille - packed array to store jedec data *

infuse - number of fuses read
k k

--

* This procedure reads in data from a true jedec formatted
file and packs the data into the array infille. k

k r

* * * * * * * * * * * * r * r * r * : * r * : * * * * * * * r * x + . * * * * * * */

int readjedec file (FILE * fpr, unsigned char * infille, unsigned long *nfuse)

char ch;
int found l field,

found f field;
int fState;
unsigned long ir

qf
OS;

unsigned char fstatech;
char found etx;
int rcode,

Col;
int J.

k;
unsigned long fohecksuin; /* Added by hit for fuse

* checksum comparison */

fchecksum = 0;
found l field = false;
found f field = false;
found etx = false;
fstatech = 0x00; /* Added by hit to set default

* to Os kA

rcode = O
A * hit 2 p?k/

write les row = 0;

for (i = 0; i < filemax; i++) {
in file i) = fstatech;

rcode - find end jedec field (&ch, fpr; /* skip jedec header */

while ((isjedec (ch)) & & (! found etx) & & Crcode == OK)) {
rCode - find beg jedec field (&ch, fpr;

if (code == OK) {
ch = toupper (ch);

if (sjedec (ch)) {
switch (ch) {

case 'L' :

5,635,855
85 86

A # * r *

GET-JEEDEC FILE

late - data file name
fpr - pointer to data file
infille - packed array to store jedec data
display - display data on screen

This procedure reads in data from a file containing jedec
data. Only the engineering version can read multiple
formats (i.e. true jedec, engineering, stripped jedec. . .)
The procedure then determines the target device of the

k

r

t

r

r

k

k

r

fuse file read in .
4.

k

int get jedec file (char "infilename, FILE * fpr, unsigned char * infille, int displa
int ir

r code,
done;

unsigned long nfuse
difuse;

char ch;

done = 0;
rcode = OK;

if (! stricmp (infillename, file name)) {
follose (fpr);

if (file ok) {
if (file id = UNKNOWN) {

rcode = OK;
done is

} else {
rcode = FILE NOT JEDEC;

}
} else

file id = UNKNOWN;
rcode = FILE NOT JEDEC;

}

if ((rcode == OK) & & (done)) {
nfuse = 0;
ch = fgetic (fpr);
files fuse = UNKNOWN;
array changed = false;

/*added by hit to support UES*/
write ues row = 0;

while ((isjedec (ch)) && (ch i = jedec stx))
ch = fget c (fpr) ;

if (ch as jedec stx) { /* standard jedec file format */
rCode = readjedec file (fpr, infille, & infuse) ;

else
rcode = FILE NOT JEDEC;
invalid jedec file (infiliename, display);

5,635,855
87 88

file id = UNKNOWN;
A * Removed by hit to support UES A
A write ues row = false;
*/

if (rcode == OK) {
file ok = true;

i = 0;

do
if (nfuse == (unsigned long) device info (i). jedec bits)

file id = i ;
else {

if (device info (i) .id -- id GAL22v10) { / see if ues bits
* specified * /

lf (nfuse == (device info (i). jedec bits + device info (i.ues bits)) {
file id = i ;
write ues row sc true;

} else
++i;

else
---i;

}
while ((i < max devices) & & (file id == UNKNOWN));

if (file id == UNKNOWN)
rcode = FILE NOT VALID;

} else {
if (array changed) {

file ok = false;
file sfuse = UNKNOWN;

}
return rcode;

5,635,855

/* x
e

k SHIFT/EXECUTE
r

* * * * r * x + x * * * * * * * * * x . . . k + k + k + k + k k + k + k + k + k * * * * * * * * * * * + k k + k + k + k k/
wroid execute ()

outp (outputport, out MODE);
outp (outputport, out MODE + out SDI);
outp (outputport. Out MODE + out SDI + out SCLK);
outp (outputport, out MODE + out SDI) ;
outp (outputport, out MODE);
outp (outputport, NUL);

A + i w k ex + r + i + x * r * r + * * * * * * * * * *
r k

MOVE TO ID STATE

* x k k k + k k + k k + k + k . . . k + k + k + k + k + k + k + k + k + k k k + k + k + r * * * * * * * * * * * * * * */

void move to id state ()

outp (outputport, out MODE) ; /* MOVE DEVICE TO ID STATE */
pulse width (10); /* allow iO mS delay for 1st

* clock ky
outp (outputport, out MODE + out SCLK) ;
outp (outputport, out MODE);
outp (outputport, NUL) ;

5,635,855
91

I claim:
1. A method for programming multiple field program

mable devices, comprising the steps of:
connecting said field programmable devices serially in a

chain configuration;
constructing a data stream file which represents a com

posite data stream for programming said field program
mable devices;

retrieving, from a plurality of program data files, an
individual programming data stream for each of said
field programmable devices;

filling said data stream file with said individual program
ming data streams to form said composite data stream;

retrieving from said data stream file said composite data
Stream,

serially shifting said composite data stream into said field
programmable devices; and

programming said field programmable devices using said
composite data stream.

2. A method as in claim 1, wherein said composite data
stream shifts instructions sequentially into said field pro
grammable devices, shifts programming data into said field
programmable devices sequentially, causes said instructions
to be executed simultaneously, and causes data to be shifted
out of said field programmable devices sequentially.

3. A method as in claim 1, wherein said individual
programming data stream comprising programming instruc
tions and programming data, and wherein said step of
retrieving an individual programming data stream comprises
the steps of:

organizing said retrieved programming data as rows, each
roW corresponding to data associated with an address
unit of the field programmable corresponding to said
individual data stream; and

5

10

15

20

25

30

92
rearranging said programming data such that rows having

a predetermined data pattern are placed behind rows
not having said predetermined data pattern.

4. A method as in claim 3, wherein said predetermined
data pattern corresponds to a default data pattern of saidfield
programmable device when unprogrammed.

5. A method as in claim 1, wherein one of said field
programmable devices comprises a serial input pin, a serial
output pin, a clock pin, and a mode pin.

6. A method as in claim 1, wherein one of said field
programmable devices is a programmable device which
comprises a programming enable pin, a serial input pin, a
serial output pin, a clock pin, and a mode pin.

7. A method as in claim 1, wherein said field program
mable devices comprises first and second field program
mable devices, said first and second field programmable
devices having, respectively, first and second gate arrays of
unequal sizes.

8. A method as in claim 1, wherein said field program
mable devices comprises first and second field program
mable devices, said first and second field programmable
devices having, respectively, first and second gate arrays of
equal sizes.

9. A method as in claim 1, wherein said field program
mable devices comprises first and second field program
mable devices, said first and second field programmable
devices having dissimilar addressing schemes.

10. A method as in claim 1, wherein said field program
mable devices comprises first and second field program
mable devices, said first and second field programmable
devices having the same addressing scheme.

: :: * : :

