JESD3-C

—=z Reproduced By GLOBAL
== ENGINEERING DOCUMENTS
Z With The Permission of EIA

o Under Royaity Agreement

JEDEC

STANDARD

Standard Data Transfer Format
Between Data Preparation System
and Programmable Logic Device
Programmer

JESD3-C

(Revision of JESD3-B)

JUNE 1994

ELECTRONIC INDUSTRIES ASSOCIATION
ENGINEERING DEPARTMENT

NOTICE

JEDEC Standards and Publications contain material that has been prepared, progressively
reviewed, and approved through the JEDEC Council level and subsequently reviewed and
approved by the EIA General Counsel.

JEDEC Standards and Publications are designed to serve the public interest through eliminating
misunderstandings between manufacturers and purchases, facilitating interchangeability and
improvement of products, and assisting the purchaser is selecting and obtaining with minimum
delay the proper product for his particular need. Existence of such standards shall not in any
respect preclude any member or nonmember of JEDEC from manufacturing or selling products
not conforming to such standards, nor shall the existence of such standards preclude their
voluntary use by those other than EIA members, whether the standard is to be used either
domestically or internationally.

JEDEC Standards and Publications are adopted without regard to whether their adoption may
involve patents or articles, materials, or processes. By such action, JEDEC does not assume
any liability to any patent owner, nor does it assume any obligation whatever to parties adopting
the JEDEC Standards or Publications.

The information included in JEDEC Standards and Publications represents a sound approach to
product specification and application, principally from the solid state device manufacturer
viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC Standard
or Publication may be further processed and ultimately became an EIA Standard.

Inquiries, comments, and suggestions relative to the content of this JEDEC Standard should be
addressed to the JEDEC Executive Secretary at EIA Headquarters, 2001 Pennsylvania Ave.,
N.W., Washington, D.C. 20006.

Published by

C®ELECTRONIC INDUSTRIES ASSOCIATION 1994
Engineering Department
2001 Pennsylvania Ave., N.W.
Washington, D.C. 20006

PRICE: Please refer to the current
Catalog of EIA, JEDEC, and TIA STANDARDS and ENGINEERING PUBLICATIONS
or call Global Engineering Documents, USA and Canada (1-800-854-7179)
International (303-397-7956)

Printed in U.S.A.
All rights reserved

PLEASE!

DON’T VIOLATE
THE
LAW!

This document is copyrighted by the EIA and may not be reproduced without.
permission..

Organizations may obtain permission to reproduce a limited number of copies
through entering into a license agreement with the EIA. For information,

contact:

EIA Engineering Publications Office
2001 Pennsylvania Ave., N.W.
Washington, D.C. 20006
(202)457-4963

JEDEC Standard No. 3-C

STANDARD DATA TRANSFER FORMAT BETWEEN DATA PREPARATION
SYSTEM AND PROGRAMMABLE LOGIC DEVICE PROGRAMMER

CONTENTS

1 INTRODUCTION
1.1 Purpose and Scope
1.2 Summary of Programming and Testing Fields.
1.3 Changes to October 1983 Standard
1.4 Changes clarifying preload test VECIOTS c.....vewerusemmrassssrmmssssscamsssoneasase
1.5 Addition of Register Observation Vector
1.6 Additions to JESD3-B that implement JESD3-C

2 SPECIAL NOTATIONS AND DEFINITIONS

2.1 Notation Conventions ... eeeerene reveesesesnieasaeasteaateennsarasssaaeaarans 3
2.2 BNF Rules and Definition veeeseesssessasessssessersssesnerestsestssnsensesetis 4
2.3 PLD Register NUmMberingccoooniimmnnsscnsnnens rbeemessesssssesnirreeaeraesnsibine .5

3 TRANSMISSION PROTOCOL

3.1 Protocol SYNaXcceceeeeuevemecmence:

3.2 Computing the Transmission Checksum

3.3 Disabling the Transmission ChECKSUM w..cvervenreieesisicnisiisnrnnnsinaneness

4 DATA FIELDS

4.1 General Field Syntax eeeeessaresestaseseuiesaseserssnseteesees SRt R R SR s e R eSS s e s s s rverreretrssesenacsens ©
4.2 Field Identifierscocovvimeeercvenccreisrennenes e eeeeearateseeteeiaseiessstessessressbRLesIASEESeSIETSSLELeteRbrsane st s eenn 7

5 COMMENT AND DEFINITION FIELDS
5.1 Design Specification
5.2 Note (N) cecveveereieninene
5.3 Device (D) ..
5.4 Values (QF,QP,QV)

6 DEVICE PROGRAMMING FIELDS
6.1 Syntax and Overview
6.2 Fuse Default State (F)....
6.3 FUSE LISt (L)..vicveeeeeenceiccennsnnesnssraes e snssssscsnsnisseneens
6.4 Fuse Checksum (C) ...coocvvrniiiiiinrrsrcesscrenciineninns
6.5 Electrical Fuse Data (E)

6.6 User Data (U)cccne.
6.7 Device IANUIICRUON (J) .coovueerererereerimiristnrrmsseses sttt s s b e sb s b b

7 DEVICE TESTING FIELDS
7.1 SyNtAX BNA OVEIVIEWoouuivurvrmsirserssssssresresscs s cnseerems s sas s s e 13
7.2 Default Test Conditions (X)ccccceimvinirerrmerensecansesstssssssncssssnsnneseees
7.3 Test VECIOTS (V) woivveeervemeiemeceecomnsiissesesnesassesesasssssnssisesorssssasnsnses
7.4 Pin Sequence (P) oo
7.5 Test Conditions
7.6 Register Preload
7.7 Register ObSETVAUON. ...ccieerrrerecscrracanserrmcasesne e e st

JEDEC Standard No. 3-C

8 PROGRAMMER/TESTER OPTIONS

8.1 Security Fuse (G) ...cooovoveeeecncmncsnsissirianinnace 21
8.2 Signature Analysis Test (8, R, T)

8.3 Access Time (A) .

9 EXAMPLES

9.1 Data File Examples 22
ANNEX

Al INTERACTIVE PROGRAMMING 25
Al.1 INTRODUCTION

Al.l.1 Purpose and Scope e retesesrereseasesessasessessrsrasssiebIES LS RS S RS R RSB RRR S SRR SRR e m s s e 25
Al.1.2 Summary of Reporting and Testing Fields 25
Al.1.3 Changes to Standard No. 3A .- .25
Al.2 DATA FILE TYPES

Al1.2.1 General ...ccocervinnisecctnreinisnesisnssrsnssenss . 26
Al.2.2 Source (S-File)26
A1.2.3 Acknowledgement (A-File) 27
Al.2.4 Continuation (C-File) rerreeerentereasasanassasens 28

Al3 FILE REPORTING FIELDS
AlL3.1 GEneralococvecceeeeircrcininrinirsaearensneseas .30
Al.3.2 Mode Declaration (M Field) ‘
Al.3.3 Error messages (ME Field)

Al.3.4 Vector failure (MV Field)

Al.4 DEVICE TESTING FIELDS
ALA. 1 GENETAL e cceerereeinreersaessesesessasessessesresssaae s s et s sen e b shmsamasme b an e seeae .31
Al.4.2 Super-Voltage Definition (QE Field)ccoomiiiiieinnicenecii s w32

Al.S IMPLEMENTATION CONSIDERATIONS

ALS.1 StANAArd NO. 3A ..ooiririeececeee e eece s sebe s b e benssns s sssae s eseas s s e en s .32
Al.5.2 Programming Specifications
Al.5.3 Programmer QE field support requirements

Al.6 EXAMPLE FILES
Al.6.1 Voltage reference adjustmentc.coceeereaiearimnnneseneetsersississsssnsasssnsnsseeeses et et e eneeneas 3
A1.6.2 LOGIC TEPIACEINENLcoveieeucmcmiiinisiaeternssisns s sa st se s ses e o e eh b b st s R en bbb s s 35

ii

JEDEC Standard No. 3-C
Page |

1 INTRODUCTION

1.1 Purpose and Scope

This standard was developed to prevent the proliferation of data transfer formats that occurred with microprocessor
development systems. The focus of the standard is on field-programmabie devices and their support tools. It is not
intended for other types of semicustom logic devices or other types of fabrication or testing equipment.

The standard includes a simple transmission protocol based on traditional PROM formats that allow a device

er to share a computer serial port with a terminal. This simple protocol is not & complete communication
protocol and does not do retries or error correction. If the device programmer has local storage, such as floppy disk,
for the programming data this protocol is not required.

This standard defines a data format for transferring the fuse or cell states between the development system and the
programmer. It does not define the device architecture such as types of logic arrays or the output macro cell. Also
the standard does not define the programming algorithms or the device and technology specific information for
accessing the fuses or cells.

Field-programmable logic devices may require more testing than programmable memories, so the standard defines a
simple functional testing format. This test vector format is not a gencral purpose parametric test language.

<STX>File for PLD 1288 Created on 8-Feb-85 3:05PM
6809 memory decode 123-0017-001

Joe Engineer Advanced Logic Corp *

QP20* QF448* QVS*

FO* XO0*

L0000 1111101111111111111111111111*

L0028 1011111111111111111111111110®

10056 1110111111111111111111111111®

L0112 0101011101111011111111111111*

10224 0101011110111011111111111111*

L0336 0101011101110111111111111111*

V0001 000000XCXNXCOXHHHL XXN®

V0002 010000XXNXCXXHHHLXXN*

V0003 1000003XCCINXCCOTHHLXXN
V0004 110000X0CKNXOCKHHHLXXN
V0005 111000XCXNXOCCHLHHXXN
V0006 111010X3XXNXCCHHHHXXN
V0007 111 100X3CNXOCKHHLHXXN
V0008 1111 10X XXNXXXLHIHXXN
C124E*<ETX>8A76

- n %

Figure 1. Exampie of & Programmable Logic Device Data File

JEDEC Standard No. 3-C
Page 2

1.2 Summary of Programming and Testing Fields

The programming and testing information is contained in various fields. The following list gives the field identifier
and a description. To comply with the standard the device programmer, tester, and development system must
provide and recognize certain fields.

Identifier Description
(n.a.) Design Specification
N Note
QF Number of Fuses in Device ***
QP Number of Device Package Pins ***
QV Maximum Number of Test Vectors ***

Default Fuse State * E Electrical Data *
Fuse List * U User Data
Fuse Checksum J Device Identification

Default Test Condition **
Test Vectors **
Pin Sequence **

Device (Obsolete)
Security Fuse
Signature Analysis
Access Time

PROY WX O
wn
-

* Programmer must recognize
hid Tester must recognize
*s2s Development System must provide

1.3 Changes to October 1983 Standard

The 1983 standard defined the D, F, L, C, V, and P field. Several other fields are now being used, and this new
standard formally defines these fields. The new standard is a superset of the 1983 standard.

The sequence and allowed combinations of the various fields have been clarified. One field, the D field, was not
clearly defined and this led to conflicting uses. The D field is made obsolete in this standard.

Several changes have been added to the test vectors to defined unspecified vectors and don't care conditions. The
test vectors now aliow for manufacture independent register preloading.

1.4 Changes clarifying preload test vectors

The B preload test vector, intended to allow preloading of buried registers, has been clarified. The previous
definition was ambiguous. In addition, register numbering guidelines have been added, and a "read-and-retain” test
condition has been added to allow selective preloading of registers, without disturbing other registers.

In Standard 3-A, the QP field was defined as containing the number of pins in the test vectors. The new standard

defines the QP field as containing the number of pins on the device package. Conditions under which the QP field
is mandatory are listed in 5.4

JEDEC Standard No. 3-C
Page 3

1.5 Addition of & register observation vector

A T vector has been added to allow the observation of all registers in a device. This allows equal access to output,
input, and internal registers. Its format parallels that of the B preload vector.

1.6 Additions to JESD3-B which implement JESD3-C
Electrical Fuse Data (E): The E field has been added to allow for the handling of special feature fuses that do not
affect the fucntion of the device. An example of this type of fuse is the power miser fuses available in some
types of PLD devices. With this addition, the integrity of the L field will remain intact such that one common
JEDEC file can be utilized to program any device with the same logical functionality.

User Data (U): The U field has been added to allow for the handling of special feature fuses that do not affect the
logic function of the device. An example of this type of fuse is the User Data Signature (information only)
available in some types of PLD devices. With this addition, the integrity of the L field will remain intact such that
one common JEDEC file can be utilized to program any device with the same logical functionality.

Device Identification (J): The purpose of the J field is to provide & means of verifying that a particular JEDEC file
is appropriate for the device which has been selected for programming. Each PLD architecture is assigned a
unique code, and each pinout variation of an architecture is assigned a unique code. Uniqueness is defined more
thoroughly below. The intent is for the device programmer to check the device and JEDEC file before
programming and then issue an error message if the device code in the JEDEC file does not match the device type
that has been selected for programming. This field does not provide for verification of the actual device in the
socket.

2 SPECIAL NOTATIONS AND DEFINITIONS

2.1 Notation Conventions

In addition to descriptions and examples this document uses the Backus-Naur Form (BNF) to define the syntax of
the data transfer format. BNF is a shorthand notation that follows these rules:

o ":="denotes "is defined as".
o Characters enclosed by single quotes are literals (required).
o Angle brackets enclose identifiers.
o Square brackets enclose optional items.
o Braces (curly brackets) enclose a repeated item. The item may appear zero or more times.
o Vertical bars indicate a choice between items.
o Repeat counts are given by a :n suffix. For example, a six digit number would be defined as "<aumber> =
<digit>6."
For example, in words, the definition of a person's name reads:
The full name consists of an optional title followed by a first name, a middle name, and a last name. The

person may not have a middle name or may have several middle names. The titles consist of: Mr., Mrs.,
Ms., Miss, and Dr.

JEDEC Standard No. 3-C
Page 4

BNF Syntax:

<full name> = [<title>] <. name> {<m. name>} <1. name>
itle> »="Mr. | Mrs'|'Ms.'| 'Miss'| Dr.’

Examples
Miss Mary Ann Smith
Mr. John Jacob Joseph Jones
Tom Anderson

2.2 BNF Rules and Deflnitions
The following standard definitions are used throughout the rest of this document:

<digit> == 01| 2|34
I'S161T |89

<hex-digit> == <digit>
'A|B|CIDIEIF

<binary-digit> :='0'| 'V’

<pumber> ;= <digit> {<digit>}

 = <space> | <carriage reurn>

<delimiter> ;= {}

<printable character> = <ASCII 20 hex ... 7E hex>

<control character> = <ASCII 00 hex ... IF hex>

| <ASCI 7F hex>
<STX> == <ASCII 02 hex>
<ETX> = <ASCII 03 hex>
<carriage return> = <ASCII 0D hex>
<line feed> .= <ASCII 0A hex>
<space> = <ASCII 20 hex> |’
<valid character> ::= <printable character>

| <carriage return> | <line feed>

<field character> = <ASCII 20 hex ... 29 hex>
| <ASCH 2B hex ... 7E hex>
| <carriage return> | <line feed>

JEDEC Standard No. 3-C
Page 5

2.3 PLD Register numbering

The B and T vectors require that PLD manufacturers provide a register grouping and numbering sequence to the
PLD programmer vendors. This numbering sequence will be used in the B and T vectors.

The registers are mumbered from 1 to N, where N is the maximum number of registers in the device. The PLD
manufacturer is responsible for assigning and documenting the register numbers.

There are three types of registers: output, internal, and input. Output registers are connected directly to a device pin
used as an output. Internal registers do not have a direct connection (or any connection) to a device pin. Input
registers are connected to device pins used as dedicated inputs. If a register can be used as an input or output

register, then this register is classified as an output register for register numbering purposes.
Registers must be sequenced in the following order:

1. Output and 1/O registers
2. Internal registers
3. Input Registers

Within a group, all registers should be numbered in ascending sequence, in the order of the lowest-number
programmable element that can be associated with each register. For example, if the lowest numbered element
used by internal register A is 31 and the jowest-numbered element used by internal register B is 61, than A is
numbered first in the register sequence. However, even if the lowest-numbered element used by output register C
is 91, C is still numbered ahead of A and B, since output registers are numbered before internal registers.

3 TRANSMISSION PROTOCOL
3.1 Protocol Syntax
This simple STX-ETX protocol is based on traditional PROM formats that allow a device programmer to share a
serial computer port with a terminal. The transmission consists of a start-of-text (STX) character, various fields, an
end-ofitext (ETX) character, and a transmission checksum. The character set consists of the printable ASCII
characters and four contro} characters (STX, ETX, CR, LF). Other control characters should not be used because
they can produce undesirable side-effects in the receiving equipment.

Syntax of the Transmission Protocol:

<format> = <STX> {<field>} <ETX> <xmit checksum>

JEDEC Standard No. 3-C
Page 6

3.2 Computing the Transmission Checksum

The transmission checksum is the 16-bit sum (i.e., modulo 65,535) of all ASCI characters transmitted between and
including the STX and ETX (see figure 2). The parity bit is excluded in the calculation.

Syntax of the Transmission Checksum:
<xmit checksum> ;= <hex-digit>4

random text <return><line feed> = 0000
STX>TEST*<return><line feed> 02454+45+53+54+2A+0D+0A = 0183
QF0384*<return><line feed> 514+46+30+33+38+34+2A+0DH0A = 01A7
FO* <return><line feed> 46+30+2A+20+20+0D+0A = 00F7

L10 101*<return><line feed> 4C+31+30+20+31430+31+2A+0DH0A = 01A0
<ETX>05C4 <return> random text 03 = 0003

05C4
Figure 2. Computing the Transmission Checksum.

3.3 Disabling the Transmission Checksum
Some computer operating systems do not allow the user to control what characters are sent, especially at the end of
a line. The receiving equipment should always accept a dummy value of "0000" as a valid checksum. This dummy
checksum is a method of disabling the transmission checksum.

4 DATAFIELDS

4.1 General Field Syntax
In general, each field in the format staris with an identifier, followed by the information, and terminated with an
asterisk. For example, "C1234*" specifies that the checksum of the fuse data is 1234. The design specification
header does not have an identifier and must be the first field in the transmission, immediately following the STX.
Syntax of Fields:

<field> = [<delimiter>] <field identifier>
{<field character>} '*'

<field identifier> == 'A'|'C'| D' | E | FI'G'|T
ITINIPIQIR
IITUTIVIX

<reserved identifier> :=B' | H|T| K
I'M|O|W|Y|Z

JEDEC Standard No. 3-C
Page 7

4.2 Field Identifiers

Each field begins with a single character identifier that identifies the field type. Multiple character identifiers can
be used to create subfields (i.e., "Al", "AS", or "AB3"). The field is terminated with an asterisk. Therefore,
asterisks cannot be embedded within the field. While not required, carriage returns and line feeds should be used
to improve the readability of the format. Reserved identifiers currently have no function and are reserved for future
use. Receiving equipment should ignore fields starting with reserved identifiers. The meanings of the field
identifiers are given in table 1.

A - Access Time N - Note
B-* O-*
C - Checksum P - Pin sequence
D - Device type Q- Value
E - Electrical Fuse Data R - Resulting vector
F - Default fusc state S - Starting vector
G - Security fuse T - Test cycles
U - User Data
I-* V - Test vector
J - Device Identification W.*
K-* X - Default test condition
L - Fuse list Y-*
M-* zZ-*

Table 1. Field Identifiers (* indicates reserved for future use)
5 COMMENT AND DEFINITION FIELDS
5.1 Design Specification

The design specification is the first field in the format, must be included, and does not have an identifier signaling
its start. An asterisk terminates the field. The contents of the design specification are not defined but should
consist of

1. User's name and company

2. Date, part number, and revision
3. Manufacturer’s device number
4. Other information

Syntax of the Design Specification:
<design specification> ::= {<field character>} "'

Example:
File for PLD 12S8
Created on 8-Feb-85 3:.05PM
6809 memory decode 123-0017-001
Joe Engineer Advanced Logic Corp *

JEDEC Standard No. 3-C

Page 8
A blank field consisting of the terminating asterisk is valid design specification field.
Example:
»
5.2 Note (N)

The note field is used to place notes and comments in the data file. The note field(s) may appear anywhere in the
file and the receiving equipment may ignore this field.

Syntax of the Note Field:
<note> ;= N <field characters> "*'

Example:
N Following vectors were modified for the ACME 123 tester*

5.3 Device Definition (D) Obsolete

This field is now obsolete; it has been eliminated to ensure the format is device and technology independent.

5.4 Values (QF, QP, QV)

The Q ficld expresses values or limits that must be provided to the receiving equipment. Three subficlds are
defined: the F subfield for the number of fuses, the P subfield for number of pins or test conditions in the test
vector, and the V subfield for the maximum number of test vectors.

These values enable the receiving device to cfficiently allocate memory and perform certain calculations. The QF
field tells the receiving equipment how much memory to reserve for fuse data, the number of fuses to set to the
default condition, and the number of fuses to include in the fuse checksum.

The QP field tells the receiving equipment the number of physical package pins on the device. This field is
mandatory if the following three conditions exist:
a) non connected pins exist on the device (such as a 24-pin device packaged in a 28-pin SCC), and
b) the file contains test vectors, and
c) the programming equipment does not automatically handle the translation required to accommodate the non
connected package pins.

The value fields must occur before any device programming or testing fields in the data file. Files with only testing
fields do not require the QF field and files with only programming fields do not require the QP and QV ficlds. The
QP field must specify all device pins for files that contain B preload vectors.

Syntax for Value Fields:
<fuse limit> :='QF <number>"*
<aumber of pins> ::= 'QP* <number> "*'
<vector limit> :='QV' <oumber> *'

Example:
QF1024* Indicates device has 1024 fuses
QP24* Indicates 24 pins on device package
Qvaso* Indicates a maximum of 250 test vectors

Table 2. Test Condition

JEDEC Standard No. 3-C
Page 9

6 DEVICE PROGRAMMING FIELDS

6.1 Syntax and Overview

Each fuse or cell of a device is assigned a decimal number and has two possible states: a zero, specifying a low
resistance link (a logical connection between two points}, or a one, specifying a high resistance link (no logical
connection between two points). The fuse numbers start at zero and are consecutive to the maximum fuse number.
For example, a device with 2048 fuses would have fuse numbers between 0 and 2047. Fuse information describing
the state of each fuse in the device is given by three fields: the default state (F field), the fuse list (L field), and the
fuse checksum (C field).

All user programmable fuses or cells may be specified with a L field. There are no separate fields for contro} terms
or architecture fuses.

Syntax of the Fuse Information fields:

<fuse information> := [<default state>] <fuse list>
{<fuse list>} [<fuse checksum>]

<default state> »= F <binary-digit> '*'

<fuse list> = L' <number> <delimiter>
{<binary-digit> [<delimiter>]} "

<fuse checksum> ::= 'C' <hex-digit>4 *'
Example:

FO*
10000 01001110 00001000 11110000 11111111 01010001*
CO21A®

6.2 Fuse Default State (F)

The F field defines the state of fuses that are not explicitly defined in the L field. Ifno F field is specified, all fuse
states must be defined by L fields. If the default state is used, it must be specified after the QF field and before the
first L field.
Example:

FO* Set default to 0

JEDEC Standard No, 3-C

Page 10

6.3 Fuse List (L)

The L field starts with a decimal fuse number and is followed by a stream of fuse states (0 and 1). The fuse number
may include leading zeros (i.e. "L12" and *L0012" are the same). A space and/or a carriage feturn must separate
the fuse number from the fuse states. The stream of fuse states can be as long as desired (up to the maximum
allowable fuse number).

If the state for a fuse is specified more than once, the last state replaces all previous ones specified for that fuse.
This allows a file to be modified or “patched" by appending new fuse states to the file.

Example:
L0000
111110111111111111111111111
101111111111111111111111111
111011111111111111111111111
000000000000000000000000000

»

Example:
L0000
111110111111111111111111111101111 11111
1111111111111
11101111111
1111111111111111
000000000000000000000000000*

Example:
L00 111110111111111111111111111°
L28 1011111111111 1111110t
L56 111011111111111111111111111*
184 000000000000000000000000000*

6.4 Fuse Checksum (C)

The fuse information checksum field is used to detect transmitting and receiving errors. The checksum is for the
entire device (fuse number 0 to maximum fuse number set by the QF field), not just the fuse states sent. If multiple
C fields are received only the last is significant.

The field contains the 16-bit sum (i.e., modulo 65,535) of the 8-bit words containing the fuse states for the entire
device. The 8-bit words are formed as shown in figure 2. Unused bits in the final 8-bit word are set to zero before
the checksum is calculated.

word 00 jmsbl | | | | | fisbl
FuseNo. 7 6 543210

word 01 jmsb| | | | | | sy
FuseNo. 15 14 13 121110 9 8

word 62 |msb| | | | | | isbl
FuseNo. - - - - 499 498 497 496

Figure 2. 8-Bit Words formed from fuse states for Checksum

QF500*

Fo*

L0000 01001110 00001000 11110000 11111111 01010001*
C021A*

Fuse

Number MSB LSB

0000 01110010 72
0008 00010000 10
0016 00001111 OF
0024 11111111 FF
0032 10001010 8A
0040 00000000 00
0048 00000000 00
0488 00000000 00
0496 ----0000 00

Fuse Checksum 021A

Figure 3. Computing the fuse checksum.

6.5 Electical Fuse Data (E)

JEDEC Standard No. 3-C
Page 11

The E field allows special feature fuses that do not affect the logic function of the device to be added without impact
to existing JEDEC files for that device. An example of this type of fuse is the power miser fuse available in

some types of PLD devices. With this addition, the integrity of the L field will remain intact such that one common
JEDEC file can be utilized to program any device with the same logical functionality.

There are two types of E fields depending on how the data is entered. The E field is for binary data, and the EH

field is for Hex data.

Syntax of the E field:

<Electrical DATA FUSE LIST>:'E'<binary digit>"*'
'EH'<hex digit>"'

Examples:
NO ELECTRICAL FUSE DATA

QF24*

L0000
101011000000000000000000*
COOAC*

The E and H fields are read left to right from MSB to LSB.

Example:

Binary [E11001010*
or
Hex EHCA®*

ELECTRICAL FUSE DATA PRESENT

QF24*

L0000
101011000000000000000000*
COOAC®

E10100111*

JEDEC Standard No. 3-C
Page 12

6.6 User Data (U)

The U field allows user data fuses that do not affect the logical or electrical functionality of the device to be added
without impact to existing JEDEC files for that device. An example of this type of fuse is the User Data

Signature (information only) available in some types of PLD devices. With this addition, the integrity of the L field
will remain intact such that one common JEDEC file can be utilized to program any device with the same logical
functionality.

There are three types of U fields depending on how the data is entered. The U field is for binary data, the UA field
is for ASCII field characters, and the UH field is for Hex data.

Syntax of the U field:
<User DATA FUSE LIST>::'U'<binary digit>'*'
"UA'<field character>"'
"UH'<hex digit>"™

The U, UH, and UA fields read left to right from MSB to LSB. If the field defined is larger than the available
space in the device, the most significant bits should be truncated by the programmer until the appropriate size is
reached. If the field is smaller than the available space in the device, the data will be fit into the device by the
programmer beginning with the least significant bit. The unused bits will be filled with zeros by the programmer.
There will be some binary combinations that cannot be represented as a field character in the UA field. The field
character(s) in the UA field are assumed to be 7 bit quantities. U field data is not to be included in the C field fuse
checksum.

Example: File with 28 user fuses
Binary U1010100100010110110001010100*
or

Hex UHA916C54*

or
ASCI UATEXT*

Examples:
NO USER DATA FUSES USER DATA FUSES PRESENT
QF24* QF24*
L0000 L0000
101011000000000000000000* 10101 1000000000000000000*
C0035* C0035*

UATEST

MSB LSB

MSBYTE LSBYTE

JEDEC Standard No. 3-C
Page 13

6.7 DEVICE IDENTIFICATION (J)

The J field provides a device identification code that uniquely specifies the logical architecture of the device for
which the file is intended. The field consists of two decimal numbers seperated by a space and is terminated with
an asterisk (*). The first number is an architecture code, the second number is a pinout code. The field is placed

front of any F, L, or H fields. The J field is optional.

Syntax for JEDEC device identification field:
<device code> =J<number><space><number>*

The numbers in the J field are decimal integers greater than or equal to zero (0) as allowed below. The actual
number for any given device is assigned by JEDEC as defined below.

The special pinout code zero (0) will be used to indicate that for a given JEDEC file, no particalar pinout is to be
enforced. In this case, only the architecture code will be used to determine the appropriateness of the JEDEC file
for the device selected.

Maximum protection is provided to the user by the combination of the architecture and pinout codes.

In no way is this code to be construed as an endorsement by JEDEC of any architecture or pinout. Any device can
be given a code, and no architecture or pinout standardization is implied.

The number used in the J field is assigned by JEDEC. Contact the JEDEC office for the request of a Device Code
form and details on assignment procedures.

A code assignment application fee will be charged by the JEDEC office. An invoice will be sent to the Sponsor,

according to a fee schedule approved by the JEDEC Solid State Products Council. The fee schedule may recognize
a group assignment for a family of devices that are receiving codes at the same time.

7 DEVICE TESTING FIELDS
7.1 Syntax and Overview
Functional test information is specified by test vectors containing test conditions for each device pin.
Syntax of Functional Test Information:
<function test> == [<default test condition>]
{<pin list>] <test vector>
{<test vector>}
<default test condition> ::= X' <binary digit> "*
<pin list> ::= P <pin number>:N '*'
<pin number> = <delimiter> <number>
N := number of pins on device
<test vector> ;= 'V* <number> <delimiter>

<test condition>:N "

<test condition> = <digit> | 'B'|'C’'|'D'| T |'H'}
TIU|X]Z

JEDEC Standard No. 3-C
Page 14

<reserved condition> :='A'|'E'|'G'|T|TIM|
o|QIS|VvIWIY

0 - Drive input low
1 - Drive input high
2-9 - Drive input to super voltage #2-9
B - Buried Register preload
C - Drive input low, high, low
D - Drive input low, fast transition
F - Float input or output
H - Test output high
K - Drive input high, low, high
L - Test output low
N - Power pins, outputs not tested, and non- connected device pins
P - Preload registers
R - Read and retain register state
T - Observe registers
U - Drive input high, fast transition
X - Output not tested, input default level
Z - Test input or output for high impedance

Table 2. Test Conditions

7.2 Default Test Condition (X)

The X field defines the input logic level for test vectors not explicitly defined and for the "don't care” test condition.
The X field will set test vectors 1 through the maximum (set by QV) to the default input test condition. If the X
field is used, it must be specified after the QV and QP fields and before the first test vector.

Example
X1* Set default test condition to |

In the following example vectors 2 and 5 would default to the don't care value of O and no outputs would be tested
for vectors 2 and 5.

Example

QVs*

QP20*

Xo*

V0001 101010000NOZLLHHZ11N*
V0003 11130000CKNOZHHLLZ1 IN*
V0004 0113X3X0XXXNOZLHLHZ11N*

JEDEC Standard No. 3-C
Page 15

7.3 Test Vectors

Each test vector contains N test conditions where N is the number of pins on the device. Table 2 lists the conditions
that can be specified for device pins.

The V field starts with a decimal vector number, followed by a space, then by a series of test conditions for each
pin, and terminated by an asterisk. The vector number may include leading zeros.

Example:

The vectors are applied in numerical order to the device being tested. The highest numbered vector to be applied is
defined by the QV field. If a vector is not specified during a data transfer the default value or a vector from a
previous transfer will be used. If the same numbered vector is specified more than once, the data in the last vector
replaces any data contained in previous vectors with that number. This allows the set of test vectors to be modified
or "patched” without transferring the entire set. :

7.4 Pin Sequence

The conditions contained in test vectors are applied to the device pins in numerical order from left to right unless
specified otherwise with the P field. (The leftmost condition is applied to pin 1, and the rightmost condition is
applied to pin 20 of a 20 pin device, for example. The timing sequence is not defined; a test condition may be
applied to pin 5 before or after pin 4.) The P field indicates an alternative correspondence between the test
conditions and the pin numbers. Each package pin, including nonconnects, must be represented by a number in the
P field.

Example:
P1234561415161778910111213181920*

V0001 111000HLHHNNNNNNNNNN®
V0002 100000HHHLNNNNNNNNNN*

Vector 1 will apply 111000 to pins 1 through 6 and HLHH to pins 14 through 17. Pins 7 through 13 and 18 through
20 are not tested (N).

7.5 Test Conditions

The test condition logic levels are defined by the device technology (e.g. TTL, CMOS, ECL). The 0 and 1 test
conditions apply a steady state logic level to the device pin. The device tester should allow the applied input
conditions to be overridden by bidirectional (input/output) device pins. The X or don' care test condition applies
the default level defined by the X field. The F test condition applies a high impedance to the device pin.

The sequence that the input conditions are applied to the device is not defined, so multiple vectors should be used
when the sequence is important. The following example ensures that pin 4 transitions to a logic level 1 before pin
3.

V01 XXO0X XXX X XN
V02 XX01XCOONXXXXXXXXXN
V03 XX 1XOCONXOOOKXXXN

JEDEC Standard No. 3-C

Page 16

The test conditions 2 through 9 apply a non standard or super voltage to the device. This may be used to access
special test modes. The levels are defined for each device and test vectors utilizing super voltages could damage
*second source” devices.

The C test condition applies a logic level 0 until all other inputs are stable (and device timing specifications are
met) then switches to a logic level 1 and retumns to a logic level 0 before the ouiputs are tested. The K test
condition goes from 1 t0 0 to 1 in & similar manner. For devices more than one clock input, multiple test vectors
should be used to ensure the proper clocking sequence.

The U test condition applies a logic level 0 until all other inputs are stable and internal set-up times met, then
switches to a logic level 1 and remains at that level. This test condition should be used for any clock input that
must make a single O to 1 transition. It is differentiated from the ‘1’ test condition in that the device tester does not
allow the input condition to be overridden by bidirectional device pins, thus allowing the U test condition to make a
much faster transition. The D test condition is analogous to the U test condition except it applies a logic level 1
until all other inputs are stable and internal set-up times met, then switches to a logic level 0 and remains at that
level.

The N test condition is used for power pins, output pins not tested, and non connected device pins.

After all inputs have stabilized, including clock, the output test are performed. The L test for a logic level 0 and the
H test for a logic level 1.

The Z test condition test that an output is in a high impedance condition.

7.6 Register Preload

Register Preload means forcing or "jam loading” a register to a known state. Three types of register preloading are
defined: "in-circuit®, "output register”, and "buried register”.

*In-circuit" preload is accomplished with dedicated input pins and/or intemnal control logic and uses normal
in-circuit logic levels. The standard input and clock test conditions may be used to preload the registers in these
devices. The "output register” and “buried register” preload operations use non standard levels or "super voltages”
to access special modes to preload the registers.

Because testing algorithms are unique for each device, the following generic methods may allow one set of test
vectors to work with "second source” devices. The device programmer/tester will apply the specific superaigorithm
for each device type.

JEDEC Standard No. 3-C
Page 17
7.6.1 P Preload Vector

A P preload vector is used to preload PLDs with output registers connected to device pins. The P preload vector is
used to set the pins to a desircd state.

The P symbol is applied to the clock pins controlling the registers. The vector values corresponding to the output
registers must be 0 or 1. The value specified in the P vector is the value that is desired at the output device pins

after the preload operation.
Example 1. Preload a 16R4 with the P preload symbol.

11111111112 <- position in the
12345678901234567890 vector

V0001 PXOCCOCOOINKXX 1101 XXN* <- P preload
vector

V0002 03XCO0CCOOMNOXXHHLHXXN® <- check
loaded value

The PLD programmer determines the value to load into the register to achieve the desired result. In the example,
the user wants a HIGH (or 1) to appear at the output pin. The programmer must actually load a 0 into the register
because of the inverting buffer in front of the 16R4 register.

The PLD programmer must set up the appropriate input and clock conditions for a preload vector to work
properly. For example, the outputs rmust be disabled for a 16R4 device by specifying a 1 for the active LOW enable
pin in the preload vector. This is part of the preload algorithm that must be supplied by the PLD manufacturer.
The designer must specify Xs (don't cares) for any unused input pins in the preload vector. If a symbol other than X
is specified, the value required by the device algorithm in the PLD programmer will take precedence.

For devices with different clock pins controlling separate banks of registers, a P symbol must be applied to the
appropriate clock pin to preload the corresponding register bank.

The P preload vector will use the pin sequence information specified by the QP and P fields. The position of the
preload value in a P preload vector and the pin sequence will determine which register to preload.

Example 2: Preloading a 16R8 and using a second non-clocked vector to test the values preloaded.

V0001 PXXCOOOCKKNK 11110000N*
V0002 0X3XCO0OCCNOHHHHLLLLN®

The values loaded into the registers are the values desired at the output pins after the preload operation.

Example 3: Programmer will override any non-X values on input pihs in the preload vector. Device is a 16R8
with active-LOW enable control on pin 11.
V0001 PXCOCOCSOMNNG 1 1110000N
V0002 0XCCCOOOMNOHHHHLLLLN

The PLD programmer will override the active LOW enable signal (0) on pin 11 in vector V0001 to perform the
preload.

JEDEC Standard No. 3-C

Page 18

7.6.2 B Preload Vector

The "buried register” preload method can be used for devices with internal registers not connected to device pins.
This may also be used for registers connected to device pins.

A B preload vector will specify the binary value to be loaded into a register, without regard to the polarity or logic
configuration of the device (i.c., active HIGH or LOW). If the register is connected to an output pin, then the value
detected at the output pin will depend on any logic circuitry positioned between the register and the pin.
A B preload vector has the format:

Vxxxx BHbbbbbbbbbbbbbbbbbb* <- 20-pin PLD

The B preload vector numbered Vxoxx (in decimal) will be a vector containing the symbols 0-9 and A-Y. The B
preload test vector length is equal to the number of pins in the device. The vector is terminated by an asterisk.

The first vector element from the left will be the B test condition symbol. The second element is an alphanumeric
character used to identify the register group to preload. Register groups will be numbered from 0-9, A-Y. The
character Z is reserved for future use.

The remaining test conditions in the vector refer to the states of uo to N-2 registers in the group identified by the
group number, where N is the number of pins on the device. The allowed test conditions are "0", "1*, "R", & "N".

The R test conditions is used by the programmer to read and retain the state of any register.
For example, if there are 8 registers in a 20-pin PLD, then these 8 registers are assigned to group number 0. Within
group 0, the 8 registers will be assigned a unique number starting from I. This register number is used to calculate
the register’s position in the preload vector.

V0001 BO11110000NNNNNNNNNN* <- 20-pin FLD
The test vector in the above example is used to preload 8 registers in a 20-pin PLD. Note that these registers can be
input, output, or internal registers. The next vector elements after the B and group number refer to the states to be
preloaded into the registers. If there are more vector positions than registers in the PLD, then the rest of the vector
is filled with the N symbols.

Example 4: Preloading a device with 12 internal registers. All 12 registers can be defined in one B preload
vector.

V0001 BO111000101010NNNNNN*
Example 5: Preloading the last 6 registers in a 20-pin PLD with 26 internal registers.
V0001 BIRR0O10100NNNNNNNNNN*

Registers 19-26 are contained in register group 1. The status of the 19th and 20th registers is retained by using the
R test condition.

Example 6: Preload registers 17 to 23 on a 20-pin device with 26 registers.

V0001 BORRRRRRRRRRRRRRRR10*
V0002 B111101RRRNNNNNNNNNN*

Vector V0001 will preload registers 17-18 (in group 0), and V0002 will preload registers 19-23 (group 1). The
other registers will remain unchanged.

1.7

JEDEC Standard No. 3-C
Page 19

The group number for the Xth register and the position of the Xth register within a preload vector can be calculated
by the following formulas:

GROUP_NO = (X-1) div (PINS-2)

POSITION_IN_VECTOR =X - ((PINS-2)*GROUP_NO) +2
where: PINS = # of device pins
div = integer division (fractions are truncated)

For example, if a 20-pin PLD has 40 registers, then the 315t register will belong in group 1.

GROUP_ NO =(31-1) div (20-2)
=30div18
=1

POSITION_IN_VECTOR =31-(18*1)+2
=31-18+2
=15

V0001 BIRRRRRRRRRRRRIRRRRR*®
A A

A register 31 in vector
group number 1 position 15

When a B preload vector is used in a JEDEC file, the QP field must specify all the device pins. The P (pin order
sequence) will not affect the B preload vector.

For both the B and P preload vectors, 0 and 1 should be used to specify register preload values. The outputs are
tested using the L and H symbols. To verify the result of a preload vector (either B or P), use a separate test vector
or sequence of vectors to test the result of a preload operation.

Register observation

Register Observation means viewing the value of a register in a PLD. Output, internal, and input registers can have
their contents examined, as provided for by special access circuitry on a device. For internal registers in particular,
three types of observation are defined: mproduct term", "super-voltage”, and "in circuit® observation.

Product term observation, if provided on the device, is accomplished with dedicated product terms and uses normal
incircuit logic levels. The standard input conditions may be used to observe the internal registers in these devices
if the observability product terms have been so configured by the user. The "super-voltage” observation operation
uses non standard levels or "super-voltages” to access special modes to observe the internal registers.

Because algorithms are unique for each device, the following generic methods will allow one set of test vectors to
work with "second-source” devices. The device programmer/tester will apply the specific algorithm for each
device type. A T vector will specify the binary value to be tested on a register, without regard to the polarity or
logic configuration of the device (i.e., active HIGH or LOW).

JEDEC Standard No. 3-C

Page 20

A T vector has the format:

Vxoooe THbbbbbbbbbbbbbbbbbb* <- 20-pin PLD

Syntax of T vector:
<group number> = <digit> |'A'| B'| .. |' T | Z'

<observation test vector> == 'V' <number> <delimiter>
T <group number> <test conditions> :N-2 '*

The T vector numbered Voot (in decimal) will be a vector containing the symbols 0-9 and A-Y. The T test vector
length is equal to the number of pins in the device. The vector is terminated by an asterisk.

The first vector element from the left will be the T test condition symbol. The second element is an alphanumeric
character used to identify the register group to observe. Register groups will be numbered from 0-9, A-Y. The
character Z is reserved for future use.

The remaining test conditions in the vector refer to the states of up to N-2 registers in the group identified by the
group number, where N is the number of pins on the device. The allowed test conditions are L', H, X, & N

For example, if there are 8 registers in a 20-pin PLD, then these 8 registers are assigned to group number 0. Within
group 0, the 8 registers will be assigned a unique number starting from 1. This register number is used to calculate
the register's position in the observation vector.

V0001 TLHHHHLLLLNNNNNNNNNN* <. 20-pin PLD
The test vector in the above example is used to observe 8 registers in a 20-pin PLD. Note that these registers can
be input, output, or internal registers. The next vector elements after the T and group number refer to the expected

states to be tested on the registers. If some registers are not to be tested, an X (or don't care) symbol should be
used. If there are more vector positions than registers in the PLD, then the rest of the vector is filled with the N

symbol.

Example 1: Observing a device with 12 registers. All 12 registers can be tested in one T vector.
V0001 TOHHHLLLHLHLHLNNNNNN*

Example2: Observing the last 6 registers in a 20-pin PLD with 26 registers.
V0001 TIXXLHLHLLNNNNNNNNNN*

The status of the 19th and 20th registers is ignored by using the X test condition. The last 6 registers are contained
in register group 1. :

Example 3: Test registers 17 to 23 on a 20-pin device with 26 registers.

V0001 TOXCOOCCOOCOKXXXXHL
V0002 TIHHHLHXXXNNNNNNNNNN*

Vector V0001 will observe registers 17-18 (in group 0), and V0002 will observe registers 19-23 (group 1). The
other registers will be ignored.

JEDEC Standard No. 3-C
Page 21

The group number for the Xth register and the position of the Xth register within an cbservation vector can be
calculated by the following formulas:

GROUP_NO = (X-1) div (PINS-2)
POSITION_IN_VECTOR = X - ((PINS-2)*GROUP_NO) + 2

where: PINS = # of device pins
div = integer division (fractions are truncated)

For example, if a 20-pin PLD has 40 registers, then the 31st register will belong in group 1.

GROUP_NO = (31-1)div (20-2)

=30div 18
=1
POSITION_IN_VECTOR =31-(18*1)+2
=31-18+2
=15
V0001 T130OCKCOCC XXX
A register 31 in vector

group number 1 position 15

When & T vector is used in a JEDEC file, the QP field must specify all the device pins. The P (pin order sequence)
will not affect the T vector.

For the T vector, L and H should be used to specify register test values. The registers are preloaded using the 0 and
1 symbols in a B or P preload vector.

8 PROGRAMMER/TESTER OPTIONS
8.1 Security Fuse (G)

The security fuse(s) of certain logic devices may be enabled for programming by sending a 1 in the G field. The
security fuse prevents the reading of the fuse states.

Syntax for the Security Fuse Field:
<security fuse> ::= 'G' <binary-digit>'*
Example:

G1* Ensable security fuse programming.

JEDEC Standard No. 3-C
Page 22

8.2 Signature Analysis Test (S, R, T)

Signature Analysis tests are specified by the S, R, and T fields. The S field defines the starting vector for the test.
The possible states are 0 and 1. The R field contains the resulting vector or test-sum. The T field denotes the

number of test cycles to be run.
Syntax for Signature Analysis Test:

<starting vector> ;= 'S’ <test condition>:N '*'
<resulting vector> =R’ <hex-digit>:8 '*'
<test cycles> = T <number> "*'

N ::= number of pins on device

Example:
S010001000011100011110110*
R5BCD34A7*
TO1*

8.3 Access Time (A)

The A field defines the propagation delay for test vectors in one nanosecond increments. This field may include
optional subfields.

Syntax for Access Time

<access time> == 'A'{<field characters>} <number>'*'

Example:
A25*
APD25*

9 EXAMPLES
9.1 Data File Examples

<STX>

.

L0000

1111101111111 11 111113111112 R01 111111 1T IR T T
11101111111111111111111111110000000000000000000000000000
01010111011110111111111111110000000000000000000000000000
00
01010111101110111111111111110000000000000000000000000000
00
01010111011101111111111111110000000000000000000000000000
HHO0HNtlHINOHHNHHHHHIIHINHHHHN
<ETX>5718

Example 1. Minimum fi

File for PLD 12588 Created on 8-Feb-85 3:05PM

6809 memory decode 123-0017-001

Joe Engineer Advanced Logic Corp *
QF0448*

Fo*

1000 1111101111111111111111 111110
1028 1011131111111111111111111111*
LO056 1110111111111 111REI111011111*
L112 0101011101111011111111111111*
1224 0101011110111011111111111111*
L336 0101011101110111111111111111*
C124E*

Example 2. Data file for device programming.

File for PLD 1288 Created on 8-Feb-85 3:.05PM

6809 memory decode 123-0017-001
Joe Engineer Advanced Logic Corp *
QP20* QV8*

V0001 000000 X 3CACCXHHHLXXN
V0002 010000 XXXNICCHHHLXXN
V0003 100000 XXXNIOCKHHHLXXN
V0004 110000XCNXOCKHHHLXXN
V0005 111000XCANICCKHLHHXXN
V0006 111010XCCNXCCKHHHHXXN
V0007 1111003XC0NXXXHHLHXXN®
V0008 111110XXXNXXXLHHHXXN®

*® & # ®& »

Example 3. Data File for device testing.

File for PLD 1288 Created on 8-Feb-85 3:05PM

6809 memory decode 123-0017-001
Joe Engineer Advanced Logic Corp *

QP20* N Number of pins*
QF0448* N Number of fuses®
QVs* N Number of vectors*
Gi* N Program security fuse*
FO* N Default fuse state®
Xo0* N Default test condition®
N Fuse RAM Data®*

L0000

1111101111111111111111111111
1011111111111111111 111111111
1110111111111131111111111111®
Lo112
0101011101111011111111111111*
L0224
0101011110111011111111111111*
L0336
0101011101110111111111HE1111*

JEDEC Standard No. 3-C
Page 23

le for device programmer as defined by Jedec Standard No. 3-A, October 1983.

JEDEC Standard No. 3-C
Page 24

N Test Vectors®

V0001 0000003OCKNXXXHHHLXXN®
V0002 01000030CNXXXHHHLXXN®
V0003 100000 XXXNXOCXHHHLXXN®
V0004 110000XONXXXHHHLXXN®
V0005 111000X30ONXOXHLHHXXN®
V0006 11101 030CNXXXHHHHXXN®
V0007 111100XCNXXXHHLEXXN®
V0008 1111103CCINXKLHHHXKN®

N Fuse RAM checksum®
C124E*

N Signature Analysis test information®
TO1*

S00000000000000000000*
R9SE4B822*

Example 4. Data File for programming and testing with options.

File for PLD 12S8 Created on 8-Feb-85 3:.05PM
6809 memory decode 123-0017-001

Joe Engineer Advanced Logic Corp *
QP20* QF448* QV8*

Fo*

V1 000000000NOOOHHHLOON*

V2 010000000NCOOHHHLOON*

V3 100000000NCOOHHHLOON*

V4 110000000NOOOHHHLOON*

LO 1111101111111101111000000001%
L28 101111111111111111111001110 ¢
LS6 1110111111111111111111101111*
L84 0000000000000000000000000000*
L112010101110111103 111111111 1111"
1224 0101011110111011111111111111%
L336 0101011101110111111111111111%
L140 THL11111L1110000 000000000000
L. 140 0000000000000000000000000000*
C124E*

V8 11111111IN111HHHL]IN®

V6 111010000NCOOHIHHOON*

V7 111100000NCOOHHLHOON®

V5 111000000N000HLHHOON®

V38 111110000NCOOLHHHOON*

Example 5. Data file showing position independence of fields.

JEDEC Standard No. 3-C
Page 25

ANNEX

Al INTERACTIVE PROGRAMMING ADDENDUM TO JEDEC STANDARD NO. 3B

All INTRODUCTION

Alll

Al.1.2

Purpose and Scope

This addendum was developed to provide limited remote, or microcomputer host, control of PLD programming
equipment. This mode of operation is required when the final PLD programming pattern cannot be determined until
after the user defines the functional requirements of the PLD and, in some cases, the device is programmed and
functionally tested.

While in this mode certain information files are bidirectionally transferred between a host microcomputer and the
programming equipment. Receipt of JEDEC files are always acknowledged by the programming equipment and
detectable error device failures are always reported to the microcomputer. The use of supervoltage fields and
vectors are also permitted in continuation files while in the interactive programming mode.

It is not the intent of this addendum to impose a system configuration that requires a host computer to program a
device. All proposed fields are optional and the manufacturer of programming equipment may elect 1o provide the
function of the host computer within its programming equipment.

The intent of this addendum is to provide the described functions until superseded by a more comprehensive
standard supporting computer remote control of programming equipment.

Summary of Reporting and Testing Fields
The reporting and testing information is contained in various fields. The following list gives the field identifier and

description of those required of this addendum but not defined in 1.2 of standard 3A. Detailed descriptions of these
identifiers are given in section 3 .

Identifier Description

M Interactive mode

ME Error message

MV Failed Test Vector

QE Super-voltage definition

Al1.1.3 Changes to Standard No. 3A

This addendum defines the supporting fields required for an optional mode of operation for PLD programming
equipment. This mode of operation is referred to as the interactive programming mode. All files used in this mode
of operation must be contained within <stx> and <etx> characters, end with an xsum (transmission checksum), and
follow the applicable rules, transmission protocol, and syntax of standard No. 3A except as specifically noted.

JEDEC Standard No. 3-C

Page 26

Al2 FILE TYPES

Al21

AlL2.2

General

The following list contains the three basic file types encountered while in this mode of operation. The A-fileis a
programming equipment to computer transmission file while the other files are computer to programmer

transmissions.

type originates function
S-file computer Source
A-file programmer Acknowledge
Cfile computer Continuation

Source file (S-file)

This file type is a programming download file formatted to standard No. 3A. An S-file always includes an Mn*
field with n=0 identifying the file as a source file indicating a new PLD programming/test session and telling the
programmer to purge memory of data from any previous PLD program/test session. The M0* field precedes the Ln
data® fields and the optional test vectors. The programming equipment must always respond to a source file with
an A-file. The S-file is the initial file if C-files are used and tells the programmer that another file may follow. The

S-file will be in one of the formats listed below.

Sa Sb
<stx> <stx>

MoO* MO*

Ln data* Ln data*
<ete> Vn vector*
Xsum <etx>
Xsum

Note: A vector may contain one or more super-voltage defining input characters. Each character is an integer
between 2 and 9 instead of the most often used 0 or 1. Integers greater than 1 refer to a super-voltage and tells the
programming equipment to apply a super-voltage of the assigned value (the value of which was previously defined
by the manufacturers individual device programming specification) to the designated device package pin. This type
of vector defines which super-voltages are used, and to which device pins the voltages are applied.

Format Sa is a simple JEDEC formatted file with the additional MO* field telling the programming equipment to
enter and/or operate in the interactive programming mode.

Note: Some programming equipment may require manual instruction to enter the interactive programming mode.
While in this mode all files must adhere to the applicable rules of standard No. 3A and this addendum.

Format Sb is the same as a Sa-file except for the test vectors. The vectors may contain super-voltage data.
The following example is a Sb-file where super-voltage #2 has been previously defined in the PLD manufacturers
programming specification. This file contains standard test vectors and a single Super-Voltage vector (V4).

JEDEC Standard No. 3-C
Page 27

Example:

A123

<sbe* MO® QP20® QF392* FO*

1000
111111111111110111101111*
L09%
111111111011010101110111°
L144
111111111010111111111111°
L192
111011111111111111111111
011101111111111111111111
111111111011010111111111*
1288
111111111111110101111101
QVs* Xo* .

Va XX 2XOOCKXNXXNNNLNNXN
V5 XXX0X 1 1XXNXXNHNNNNXN®
C134A* <etx>xsum

Note: S-files vectors with super-voltage specifying characters can only be used where the super-voltage(s) have been
pre defined in the PLD manufacturers individual device programming specification.

After accepting the S-file the programmer will

a) program the device per theLn data® field data,

b) test per any vector fields,

c) always respond with an A-file with errors reported, and
d) be ready to receive a C-file or another S-file
Acknowledgement file (A-file)

This file type is provided by the programmer following receipt of each S-file or C-file and includes either the M1°,
MEn®, or MVn vector® fields. The file will be in one of the four formats shown in the following table.

Asa Ab Ac Ad
<stx> <stx> <stx> <st>
Ml* MEn* MVn vector* MEn*
<eteor <etx> <ete MVn vector*
Xsum ~ Xsum Xsum <et>
xXsum

Format Aa tells the controlling microcomputer that the S-file or C-file was received and processed with no
detectable errors.

Format Ab tells the microcomputer of an error occurrence while loading or processing the S-file or C-file. The
MEn* ficld signals the errors with n defining the error types. Applicable errors can be defined with as many ME
fields as required. The error types are listed in 3.3.

Format Ac is used if test vectors are included in the downloaded file and vector failures have occurred. Upon
receipt of this file the microcomputer will download a correction, or programming, continuation file (Ce-file or
Cd-file), the original or a new S- file for the next PLD, or quit.

JEDEC Standard No. 3-C

Page 28

Al24

If failures occurred on pin 15 of vectors 2 and 4 in the example Sb-file shown in 2.2, the following Ac-file would be
sent to the host. Note: Vector 4 dictates that a super-voltage be applied to device pin 4.

Example:

<sbe>

MV2 HIXCCOCOINXXNNLNNNXN®
MV4 XCORXOOOOINXXNNHNNNXN
<epX>r Xsum

Format Ad tells the host that other potentially fatal errors have occurred in addition to test vector failures. The h_ost
may be able to take corrective action with a C-file if the erors were limited to fuse programming or verification
failures whose locations may be determined by the failure pattern indicated by the failed vectors.

Note: The least complex use of the interactive programming mode provides a simple computer controlled device
programming system. This procedure does not make use of super-voltages, i.e., C-files or QE fields and is as
follows:

1) Sa-file (Sb if vectors in file) to programmer

2) Aa, Ab, or Ac-file to microcomputer

3) microcomputer displays applicable message, ie.
error, request for new filename, etc.

4) microcomputer accepts applicable inputs, ie.
new filename, requests to repeat file, etc.

5) go to step 1 if additional devices to be programmed

6) software exit

Continuation file (C-file)

This file type is software generated, as required for each individual PLD, and is not available or usable for any other
PLDs. The C-file always includes an Mn* field where n=2 indicating a continuation file and telling the
programming equipment to hold all relevant PLD data and to permit patching of PLD data as required.

A continuation file may contain a QEn value®, Ln data®, and/or Vn vector* fields, but need not repeat the QP, QF,
and F fields of the most recent S-file. This file type is always preceded by an S-file and is the only file type permit-
ted to contain QEn value® fields. The file will be in one of the four formats shown in the following table.

Note: For selected PLDs, on-chip voltage sources can be programmatically altered or defective logic paths can be
replaced. Ln data® fields, created by the computer and included as part of the C-files, define the new values or
logic paths. The contents of the Ln data® fields can be algorithmically defined as a result of the user defined logic
in conjunction with the pattern of vector failures.

Ca Cb Ce Cd
<S> <stx> <stx> <st>
M2* M2* M2* M2*
QEn value* QEn value* Ln data* QEn value*
Vn vector* <et> <etx> Ln data*
<ctx> Xsum Xsum Vn vector*
Xsum <et>
Xsum

Note: Vectors in a C-file may contain super-voltage references.

Format Ca tells the programming equipment to set the values of one, or more, super-voltages as directed by the QEn
value® field(s) and to perform the tests per the applicable Vn vector® field(s). Values defined in the QE fields
supersede any predefined super-voltage values.

JEDEC Standard No. 3-C
Page 29

Note: In some cases, on~chip voltage sources can be measured, internal to the the device, by comparing their values
to external voltage references (the super-voltages) applied to the device pins during certain vector tests. The QEn
value® fields define the value of the external voltage references. The vectors define which super-voltages are used,
and to which device pin the voltages are provided. The result of the on<chip voltage comparison is seen as logic
level device outputs and referenced in the vectors as H or L output level identifying characters.

Devices may fail one or more test vectors because predefined internal voltage references do not agree with intemal
references developed as a result of device programming.

Format Cb permits changing the values of the super-voltage and performing tests with predefined vectors (those
contained in a source file or earlier continuation file).

Format Cc is used to change the value of on-chip voltage sources by programming selected cells. This is the
required format when the default values of the super-voltages are defined in the programming specification, tested
with a Sb-file, and one-pass correction is acceptable. . This file type is also used when the super-voltages have been
previously defined in an earlier C-file within the current programming/testing session (while programming or
testing the same PLD).

Following is an example Cc-file transmitted in response to the Ac-file shown in 2.3. The vectors that need be
retested after the cells are programmed need not be repeated in this file. All vectors and other applicable PLD data
previously transmitted are resident in the programmer until a new S-fille is provided. Cell numbers 384 through 391
in this file are reserved to alter internal voltage references. The source Sb-file for this example is shown in 2.2.
Note that the C (fuse checksum) has been updated to reflect the changes in the fuse map.

Example:

<stx> M2*

L384

11010010*
C13AB* <etx>xsum

Format Cd changes the values of on-chip and super-voltage sources and defines one or more appropriate vectors to
test the results.

Note: The least complex use of the QE fields in the interactive programming mode is as follows:

1) Sc-file (Sd if non-super-voltage defining vectors are required) to programmer
2) A-file to microcomputer
3) if no vector fails then go to step 6
4) Cc-file to programmer
5) A-file to microcomputer
6) message and/or operator inputs at microcomputer
7) go to step 1 if additional devices to be programmed
8) software exit

This provides a simple computer controlled device programming system with a one-pass correction of on-chip
voltage sources.

JEDEC Standard No. 3-C

Page 30

AlL3 FILE REPORTING FIELDS

Al3.1

Al3.2

Al3.3

General

Two major field identifiers are used in the implementation of this addendum. The Q field identifier is defined in
standard No. 3A. The M field identifier is new to this addendum.

<field identifier> :=='M | 'Q’

Field Identifiers
M - mode Q - value (per standard 3A)
Mode declaration field (Mn)

The Mn* field in host provided JEDEC files instructs the programming equipment to enter and/or continue
operation in the interactive (LOAD, GO, and REPORT ERROR) programming mode. The MO field is contained in
all S-files, M1 in A-files where no errors are being reported, and M2 in all C-files.

Error reporting (MEn)

This field is found only in A-files reporting errors detected by the programming equipment. More than one MEn
field may be in the file if more than one error type is detected with n indicating the error type.

The MEn* field is required if a fatal, or potentially fatal, error or failure occurs. The host microcomputer provides
the user with the appropriate message and takes the appropniate action if applicable when the cause of an error is
identified. The response to PLD programming failures is based in some cases on user inputs. The final action
taken may be to end the session, initiate corrective action with a C-file, or to begin a new PLD programming session
with an S-file.

While in this mode of operation the programming equipment will continue processing the file after certain error
types occur as defined by the PLD manufacturers programming specification. If a programming, verification, or
vector failure were to occur, the equipment would continue the programming, verification, vector testing, and report
all detected error types to the host microcomputer. The final determination to abort the program/verification/test
session is made by the microcomputer or by error limits as defined in the PLD programming specification.

Error message field (MEn)

<error message> ::= 'ME' <number> '*

JEDEC Standard No. 3-C
Page 31

Error messages:

field error type
MEO*® undefined error

ME]* no device in socket

ME2* device insertion error

ME3* reversed device

MEA4* device over-current fault

MES* faulty device

MES6* electronic ID verify error

ME7* load or file error

MES* secured device

MES* security fuse programming error
ME10*fuse checksum
ME11*transmission checksum
ME12*programming failure
ME13*verify failure

ME14*cell pre-programmed to wrong state
ME15*preload not supported by device
ME16*test vector syntax error
ME17*super-voltage definition error
ME18*unrecoverable error

Note: If a particular error type is not defined the MEO® ficld may be used. Certain error types such as ME12,
ME13, and ME14 nced not necessarily be interpreted as fatal by the host microcomputer. The device programming
specification may specify limits for certain error types and expect an ME18* field if the number of programming
failures, normally reported by an ME12* field, exceeded the limit.

Al.3.4 Vector failure field (MVn)

This field is found only in A-files reporting test vector failures to the host. All vector failures are reported in the
same sequence as listed in the source file.

One MVn vector* field exists for each failed vector with n indicating the vector number. An MVn vector® field
indicates a failed vector. The vector number (n) and input data are the same as that most recently provided by the
computer in the S-file or C-file. The vector data reflects the data as seen by the programming equipment allowing
the computer to compare the failed vectors with the original vectors to locate the errors and take the appropriate
action.

Al.4 DEVICE TESTING FIELDS

Al.4.1 General

The use of QE* fields and associated vectors (with super-voltage data) permit the measurement of on-chip voltage
references. The actual value of the voltages may be determined, in part, by the user defined logic, or digital data,
programmed into the device. A separate QE field is required for each super-voltage to be defined in the vectors,
and all must occur in the file prior to the associated test vectors.

JEDEC Standard No. 3-C
Page 32

Al.4.2 Super-Voltage Definition (QEn)
The use of the QE field may provide information regarding device characteristics. Many new devices allow for, and
require that, these device characteristics be altered if they are not satisfactory. This procedure will require that
additional JEDEC files be acted upon by the programmer depending on the results of, and in a manner dictated by,

thesprevious file. This procedure can only be accomplished in a C-file after the recognition of a M0* field in the
original JEDEC formatted file (S-file). Under no circumstances may a source file contain a QE field.

Syntax of QE field:
<super-voltage> ::= '\QF' <digit> <delimiter> <number> "*'

Example:

QE3 10500* Indicates Super-Voltage #3 is 10.5 volts
QES 64300* Indicates Super-Voltage #5 is -14.3 volts
Definition
Each QEn d* field, in conjunction with proper Vn vector® fields, specifies the value of a super-voltage used within

one, or more, of those vectors.

n is an integer 2 to 9 representing one of the eight super-voltages which may be defined.

d is a decimal number from O to 99999 (1-5 digits) defining the value, in millivoits, of the super-voltage. The
actual voltage is d mod 50000, permitting values from -49.999 volts to +49.999 volts to be defined. The
numbers from 0 to 49999 define the positive voltages.

Al.5 IMPLEMENTATION CONSIDERATIONS
Al.5.1 Standard No. 3A
Standard No. 3A describes a means of patching the fuse list portions of files in programmer memory. To ensure
that new files completely replace earlier files in the interactive programming mode the programmer must recognize

the MO* as being in a new (source) file and as a signal to clear memory.

All source files must adhere strictly to the standard. Continuation (C-files) need not repeat previously transmitted
PLD data to the programmer.

JEDEC Standard No. 3-C
Page 33

Al.5.2 Programming Specifications

The use of a QE field requires that the device manufacturers programming specification include the number of
super-voltages and the following data, if applicable, for each:

a) identification number (2 through 9)

b) default value (lower limit if not defined)
c) upper and lower limit

d) slew rate limits of each edge

¢) minimum hold time to vector execution
f) device pin to which it is applied

g) the source/sink current required

h) the cell numbers affecting QE values

Comment: The following limitations may restrict the use QE fields for some programming equipment:

1) number of programmable voltage sources
2) device pins to which the voltages may be applied
3) the accuracy and resolution of the voltage sources

Note: the source/sink current requirements of the target pin for a super-voltage may have a dramatic effect on the
accuracy and resolution of the super-voltage.

AL.5.3 Programming Equipment QE field support requirements

For device programmers supporting this field, the recognition or acceptance of a QE field, or a vector using &
super-voltage, would be restricted to supported devices and the use detailed in the applicable device manufacturer's
programrming specification. The device programmer must check QE values and compare to specified limits.

The device programmer should ensure that file type is appropriate for the device/pinout code and check
super-voltage specifying vector locations and compare to the specified pins.

Al.6 EXAMPLE FILES
Al.6.1 Voltage reference adjustment

These examples represent a single PLD programming session where the values of a number of on-chip voltage
sources are changed.

<sbe>* MO* QP20* QF2056* FO*
L0000

IRRE RN RRANRERRRRRRARY
10111111110111111111101010011101
L1024
10111111110111111111111111101111
11111111110111111111101111101111*
L1792

1111111111 1000011 T 01001
10111111111111111111111011111110°
QVs* X0*

V1 000XCOOXNXXNNHNNNXN*
V2 100XCCOOOINXNNLNNNXN®
V3 11 1IXCOOCONXXNNHNNNX N
V4 10 1X00CCOMNXXNNLNNNXN®
Ccsum® <etx>xsum

JEDEC Standard No. 3-C

Page 34

Example 1. An Sb-file with vectors not dictating a super-voltage where an internal voltage reference will be
affected, in part, by the logic pattern defined by the L fields. Programmer memory is reserved for subsequent L and
V fields. Previous PLD data is erased from memory.

<ste>M1* <eboxsum
Example 2. An Aa-file from the programmer indicating no errors in previously transmitted Sb-file.

<ste>M2* QE2 10100* QE3 10300* QE4 10500*
V5 234X000COINXXLLLLLLXN®
<et>Xsum

Example 3. A Ca-file with super-voltage assignments, based on the Sb-file previously transmitted. Any default
super-voltage values that may have been specified by the PLD manufacturers device programming specification are
replaced by the values specified in this file. The previously transmitted QV and X fields are held valid. The vector
is patched into the programmer memory.

<st>
MV35 23430CCOCINXXLHLLHHXN
<et>xsum

Example 4. An Ac-file providing the data for a vector failure in the Sb-file.

<ste> M2*

L2048

00101110*

Ccsum?® <etx>xsum

Example 5. The Ce-file alters the values of on-chip voltage references by programming additional fuses. The new
values were determined by the pattern of vector failures. The pattem of vector failures was determined by the logic
pattern programmed into the device and the original values of the on-chip references. The fuse checksum reflects
the new fuse map. All resident vectors are tested after programming. The values of the super-voltages are
unchanged.

<stx>M1* <etx>xsum

Example 6. The final Aa-file for the session indicating a correct programming of the on-chip voltage sources. A
new PLD session is initiated by an S-file.

JEDEC Standard No. 3-C
Page 35

Al.6.2 Logic replacement

This example represents a PLD programming session where redundant logic paths are programmed to replace
existing, defective, paths.

<ste>* MO* QP20* QF2056* FO*
10000
10111111110101010110101010011101
L1024
10111101101110101011111111101111
11111111110111111111101111101111*
L1792
11111111101111110111101111010111
10111111111111111111111011111110%
QV4* X0*

V1 000XX10XXNXXNNHLHNXN*
V2 100XX1 1 XXNXXNNLLLNXN®
V3 11X IXCINXXNNHHLNXN®
V4 10IXXT0XXNXXNNLLHNXN*
Ccsum® <etx>xsum

Example 1. An Sb-file with vectors (no super-voltage data). Since this is a source file, previous PLD data is erased
from memory.

<stx>

MV1 000XX10XXNXXNNHLLNXN*
MV3 111XX1 1 XXNXXNNHHHNXN*
<gtx>xsum

Example 2. An Ac-file providing vector failure data (pin 18).

<stx> M2*

12048

10101110*
Cesum®™ <etx>xsum

Example 3. The Cc-file replaces the failed logic path by programming selected additional fuses. The replacement
path was determined by the pattern of vector failures and the logic pattern programmed into the device by the source
file. The fuse checksum reflects the new fuse map. Resident vectors are tested after programming. Had the logic
re-routing cells been previously programmed a fuse checksum failure would have been given.

<stx>M1* <etx>xsum

Example 4. The final Aa-file for the session indicates correct programming and operation of the logic path
replacement circuits.

